Loss Reserve Errors, Income Smoothing and Firm Risk of Property and Casualty Insurance Companies

Chunyan Zhang
Department of Actuarial Science, Risk Management and Insurance
Wisconsin School of Business
University of Wisconsin-Madison

Mark J. Browne
Department of Risk Management, Insurance and Actuarial Science
The Tobin College of Business
St. John’s University
Agenda

1. Introduction
2. Literature Review
3. Hypotheses
4. Data and Method
5. Empirical Results
6. Conclusions
Introduction

- Loss Reserve Errors
- Income Smoothing
Loss Reserve Errors

- Non-discretionary V.S. Discretionary Errors

Typical time line of a non-life insurance claim

Loss Reserve Errors of Property/Casualty Insurance Industry
($millions)

Data Source: Best's Aggregates & Averages - Property/Casualty (Annually).
Income Smoothing

- **Income smoothing**: reduce volatility

- **Loss Reserve: a “good smoother”** (Copeland 1968)
 1. Does not commit the firm to any particular future action;
 2. Based on the exercise of professional actuaries;
 3. Leads to material shift of income;
 4. Does not require a “real” transaction with second parties;
 5. Adjustments can be conducted over consecutive years.

- **Benefits of income smoothing**
 - Increase firm value
 - Less dependence on costly external financing market
 - Less likelihood of **negative earnings surprises**
 - Less forecast errors (more followers) thus more attractive to investors
 - ….
Agenda

1. Introduction
2. Literature Review
3. Hypotheses
4. Data and Method
5. Empirical Results
6. Conclusions
Literature Review

- Income Smoothing

- Increase Tax Shield

- Financial Distress

- Rate Regulation

- Executive Compensation
 - Browne at al. 2009, Eckles and Halek 2010

- Others
Limitations: Income Smoothing

- Univariate analysis (e.g. F-variance test)
 - Anderson 1971, Smith 1985

- Based on ex-post results
 - Smooth = average overall net income of previous three years
 - E.g. Grace 1990, Grace and Leverty 2012
 - Distribution of overall net income

- Difficulty: “True” underwriting income = reported underwriting income - loss reserve errors
An alternative way

- Overall income
 \[\text{Overall income} = \text{underwriting income} + \text{investment income} + \text{other income} \]
- Loss reserve errors V.S. investment income

Incomes are scaled by total assets. Data source: NAIC annual Statements (Annually).
An alternative way: feasibility

- Loss reserves
 - Estimation of future unpaid liability of losses incurred
- If without manipulation: loss reserve errors are related to underwriting risk, but not significantly related to investment risk
 - SAP: Loss reserves are undiscounted (with exceptions)
 - Loss reserving: most are based on run-off triangles
 - Loss reserve error: moves accrual between “liability” and “equity”
 - Sources of investment income: funds attribute to underwriting (loss reserves, unearned premium reserves), and policyholders’ surplus
 - Decrease reserve will increase policyholders’ surplus
 - Rate of investment return on assets of previous years
Agenda

1. Introduction
2. Literature Review
3. Hypotheses
4. Data and Method
5. Empirical Results
6. Conclusions
Hypotheses

- Ha: Loss reserve errors are positively associated with the investment risk of insurers, after controlling firm characteristics and risk in underwriting.

All else equal:

- Ha 1.1: Loss reserve errors + volatility of investment income of P/C insurers

- Ha 1.2: Loss reserve errors - level of average investment return of P/C insurers

- Ha 1.3: Loss reserve errors + risk in investment portfolios of P/C insurers
Hypotheses (1.1)

Income Smoothing and volatility of income

Firm 1

Firm 2

C A Target Income B D
Hypotheses (1.2)

Incentive of income smoothing with different income levels

![Graph showing probability distributions for different firms at various rate of return points](image)
Agenda

1. Introduction
2. Literature Review
3. Hypotheses
4. Data and Method
5. Empirical Results
6. Conclusions
Methodology

\[\text{Error}_{i,t} = \alpha + \delta \text{Risk}_{i,t} + \theta Z_{i,t} + \beta X_{i,t} + \varepsilon_{i,t} \]

- **Error**: Loss reserve errors
- **Risk**: Investment risk & Underwriting risk
- **Z**: Other factors tested in previous literature
- **X**: Firm demographics
Loss Reserve Errors

- Prevalent measures of loss reserve errors:
 - Kazenski, Feldhaus, and Schneider (1992)

\[
KFS\ Error_{i,t} = \text{Losses Incurred}_{i,t} - \text{Developed Losses Incurred}_{i,t+j}
\]
Investment Risk

- **INVSTD**
- **INVMEAN**
- **BONDCHARGE**: a measure of default risk of bond investments

 \[BONDCHARGE = (\text{bondclass}1 \times 0.003 + \text{bondclass}2 \times 0.01 + \text{bondclass}3 \times 0.02 + \]

 \[\text{bondclass}4 \times 0.045 + \text{bondclass}5 \times 0.10 + \text{bondclass}6 \times 0.30)/\text{TotalAsst} \times 100 \]

 - NAIC Risk-Based Capital formula

- **RLMRTG**
- **AFFIINV**
Underwriting Risk

- LIABILITY
- AUTO
- WCOMP
- REINSASMD
- BUSHERF
- GEOHERF

Others

- REINSURANCE
- TAXSHIELD
 \[\text{TAXSHIELD}_{i,t} = \frac{\text{Net Income}_{i,t} + \text{Reserve}_{i,t}}{\text{Total Assets}_{i,t}} \times 100 \]
- RBCRATIO

Demographics

- AGE, SIZE, STOCK, GROUP, GROWTH
DATA and Model

- NAIC Annual Statement database (1991 to 2012)
- Data used: 1996-2007
- Sample size after screening: 14326

- Feasible general least square (FGLS, Mixed effects)
 - Fixed effects on year dummies
 - Random effects on companies
 - Adjust for autocorrelation and heteroskedasticity

1893 companies
Average time period = 7.6 years
Agenda

1. Introduction
2. Literature Review
3. Hypotheses
4. Data and Method
5. Empirical Results
6. Conclusions
KFS Errors and Income Streams

Data Source: Best's Aggregates & Averages - Property/Casualty(Annually).
KFS Error-Corrected Policyholders' Surplus of P/C Insurance Industry (1982-2012)

Data Source: Best's Aggregates & Averages - Property/Casualty (Annually).
Model Results (1)

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>ABS(ERROR)</th>
<th>ERROR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model (1)</td>
<td>Model (2)</td>
</tr>
<tr>
<td></td>
<td>Full Sample</td>
<td>Over-reserve (ERROR>0)</td>
</tr>
<tr>
<td>INVMEAN</td>
<td>-0.0393</td>
<td>0.0169**</td>
</tr>
<tr>
<td>INVSTD</td>
<td>0.0247</td>
<td>0.0124**</td>
</tr>
<tr>
<td>BONDCHARGE</td>
<td>0.2925</td>
<td>0.1304**</td>
</tr>
<tr>
<td>RLMRTG</td>
<td>-0.0085</td>
<td>0.0136</td>
</tr>
<tr>
<td>AFFINV</td>
<td>0.0056</td>
<td>0.0031*</td>
</tr>
<tr>
<td>LIABLLINE</td>
<td>0.0328</td>
<td>0.0016***</td>
</tr>
<tr>
<td>AUTO</td>
<td>-0.0036</td>
<td>0.0016**</td>
</tr>
<tr>
<td>WCOMP</td>
<td>0.0045</td>
<td>0.0035</td>
</tr>
<tr>
<td>SHORTTAIL</td>
<td>-0.0088</td>
<td>0.0014***</td>
</tr>
<tr>
<td>REINSASMD</td>
<td>-0.0078</td>
<td>0.0012***</td>
</tr>
<tr>
<td>REINSURANCE</td>
<td>-0.0080</td>
<td>0.0011***</td>
</tr>
</tbody>
</table>
Agenda

1. Introduction
2. Literature Review
3. Hypotheses
4. Data and Method
5. Empirical Results
6. Conclusions
Conclusions

- The results suggest income smoothing via loss reserves are related to the performance of investment.

- The reserves are more accurate when:
 - Investment income level is higher
 - Investment income volatility is lower
 - The default risk of bonds is lower
 - % of affiliated investment is lower

- Further Research
 - Improve the investment risk measures (e.g. diversification)
 - Identify lines of business with higher process errors
 - Asset-liability management of property/casualty insurers
THANK YOU!