A Cautious Note on Natural Hedging of Longevity Risk

Nan Zhu
Illinois State University

Daniel Bauer
Georgia State University
1. Introduction

2. Mortality Forecasting Models

3. Economic Capital for a Stylized Insurer

4. Natural Hedging of Longevity Risk

5. Conclusion
Introduction

Mortality Forecasting Models

Economic Capital for a Stylized Insurer

Natural Hedging of Longevity Risk

Conclusion
Introduction

Background & Literature Review

Longevity risk

\[\Downarrow \]

Policyholders’ future realized mortality rates

\[\Downarrow \]

Life insurers’ liabilities

Approaches to protecting against longevity risk:
- **Stochastic** mortality forecasting models
- Externally \[\rightarrow \] Mortality-linked securities
- Internally \[\rightarrow \] natural hedging
 - life insurances \[\leftrightarrow \] annuities

Literature:
- Cox and Lin (2007): Companies selling both life and annuity products charge cheaper prices ⇒ evidence of natural hedging
- Wetzel and Zwiesler (2008): Portfolio composition significantly impacts longevity exposure
- Tsai et al. (2010): Optimal product mix to minimize CVaR
Introduction

Background & Literature Review

Longevity risk

\[\Rightarrow \]

Policyholders’ future realized mortality rates

\[\Rightarrow \]

Life insurers’ liabilities

Approaches to protecting against longevity risk:

- **Stochastic** mortality forecasting models
- Externally \(\rightarrow \) Mortality-linked securities
- Internally \(\rightarrow \) **natural hedging**
 - life insurances \(\leftrightarrow \) annuities

Literature:

- Cox and Lin (2007): Companies selling both life and annuity products charge cheaper prices \(\Rightarrow \) evidence of natural hedging
- Wetzel and Zwiesler (2008): Portfolio composition significantly impacts longevity exposure
- Tsai et al. (2010): Optimal product mix to minimize CVaR
Introduction

Background & Literature Review

Longevity risk
\[\downarrow \]
Policyholders’ future realized mortality rates
\[\downarrow \]
Life insurers’ liabilities

Approaches to protecting against longevity risk:

- **Stochastic** mortality forecasting models
- Externally → Mortality-linked securities
- Internally → **natural hedging**
 - life insurances ↔ annuities

Literature:

- Cox and Lin (2007): Companies selling both life and annuity products charge cheaper prices ⇒ evidence of natural hedging
- Wetzel and Zwiesler (2008): Portfolio composition significantly impacts longevity exposure
- Tsai et al. (2010): Optimal product mix to minimize CVaR
Underlying mortality forecasting models:

- **Existing literature:**
 - (Low-dimensional) factor models: Lee-Carter model (Lee and Carter (1992)), CBD model (Cairns et al. (2006))
 - Error term σ_t affects time-t mortality rates at different ages simultaneously
 - Cannot capture disparate shifts in mortality rates at different ages
 - Life insurances (working class) \Leftrightarrow annuities (retirees)
 - *Positive* conclusions of natural hedging

- **This paper:**
 - Parametric factor model & non-parametric mortality model (Zhu and Bauer (2012))
 - *Natural* way to test natural hedging

Main findings:

- Using factor models helps to create a **perfect hedge** for mortality risk by utilizing natural hedging
- **BUT:** Different result from non-parametric mortality model
 - Natural hedging might not be as effective as we think
Contributions

Underlying mortality forecasting models:

- **Existing literature:**
 - (Low-dimensional) factor models: Lee-Carter model (Lee and Carter (1992)), CBD model (Cairns et al. (2006))
 - Error term σ_t affects time-t mortality rates at different ages simultaneously
 - Cannot capture disparate shifts in mortality rates at different ages
 - Life insurances (working class) ⇔ annuities (retirees)
 - ? Positive conclusions of natural hedging

- **This paper:**
 - Parametric factor model & non-parametric mortality model (Zhu and Bauer (2012))
 - Natural way to test natural hedging

Main findings:

- Using factor models helps to create a perfect hedge for mortality risk by utilizing natural hedging
- **BUT:** Different result from non-parametric mortality model
 - Natural hedging might not be as effective as we think
Underlying mortality forecasting models:

- **Existing literature:**
 - (Low-dimensional) factor models: Lee-Carter model (Lee and Carter (1992)), CBD model (Cairns et al. (2006))
 - Error term σ_t affects time-t mortality rates at different ages **simultaneously**
 - Cannot capture disparate shifts in mortality rates at different ages
 - Life insurances (working class) ⇔ annuities (retirees)
 - ? Positive conclusions of natural hedging

- **This paper:**
 - Parametric factor model & non-parametric mortality model (Zhu and Bauer (2012))
 - **Natural** way to test natural hedging

Main findings:

- Using factor models helps to create a **perfect** hedge for mortality risk by utilizing natural hedging

- **BUT:** Different result from non-parametric mortality model
 - Natural hedging might not be as effective as we think
Introduction

Mortality Forecasting Models

Economic Capital for a Stylized Insurer

Natural Hedging of Longevity Risk

Conclusion
Mortality Forecasting Models

Non-Parametric Model

Forward survival probabilities:

\[
\tau p_x(t) 1_{\{\tau_{x-t} > t\}} = \mathbb{E}^{P} \left[1_{\{\gamma_{x-t} > t+\tau\}} \mid \mathcal{F}_t \vee \{\gamma_{x-t} > t\} \right], \quad 0 \leq T \leq t \leq T + \tau
\]

Generational survival data \(\tau p_x(t_j)\): \(j = 1, \ldots, N\)

\[
F(t_j, t_{j+1}, (\tau, x)) = -\log \left\{ \frac{\tau+1 p_x(t_{j+1})}{\tau+1+t_{j+1}-t_j p_x(t_{j+1}+t_j(t_j))} \right\}
\]

\[
= -\log \left\{ \frac{\tau+1 p_x(t_{j+1})}{\tau p_x(t_{j+1})} / \frac{\tau+1+t_{j+1}-t_j p_x(t_{j+1}+t_j(t_j))}{\tau+t_{j+1}-t_j p_x(t_{j+1}+t_j(t_j))} \right\}
\]

\[
\bar{F}(t_j, t_{j+1}) = (F(t_j, t_{j+1}, (\tau, x)))_{(\tau, x) \in \mathcal{C}}, \quad j = 1, 2, \ldots, N - 1
\]

\[
\Rightarrow \quad \bar{F}(t_j, t_{j+1}) \text{ are i.i.d. Gaussian distributed (Prop. 2.1, Zhu and Bauer (2012))}
\]

\[
\Rightarrow \quad \text{Simulate } \bar{F}(t_N, t_{N+1}) \text{ based on sample mean and covariance matrix from } F(t_j, t_{j+1}, (\tau, x)), \quad j = 1, \ldots, N - 1
\]

\[
\Rightarrow \quad \tau p_x(t_{N+1})
\]
Mortality Forecasting Models

Parametric Factor Model

Forward force of mortality (easier to model/work with than $\tau p_x(t, T + \tau)$):

$$\mu_t(\tau, x) = -\frac{\partial}{\partial \tau} \log \{\tau p_x(t, t + \tau)\}$$

Consider **time-homogenous diffusion-driven** models (cf. Bauer et al. (2012))

$$d\mu_t = (A \mu_t + \alpha) \, dt + \sigma \, dW_t$$

- **Drift condition** (Cairns et al. (2006, ASTIN)): With W_t Brownian motion under \mathbb{P},

 $$\alpha(\tau, x) = \sigma(\tau, x) \times \int_0^\tau \sigma'(s, x) \, ds$$

- **Bauer et al. (2012):** μ_t allows for a Gaussian finite-dimensional realization (FDR) iff

 $$\sigma(\tau, x) = C(x + \tau) \times \exp\{M\tau\} \times N$$

- **Zhu and Bauer (2012):**

 $$\sigma(\tau, x) = k \frac{\exp\{c(x + \tau) + d\}}{1 + \exp\{c(x + \tau) + d\}} (a + \tau) e^{-b\tau},$$
Economic Capital for a Stylized Insurer

1. Introduction
2. Mortality Forecasting Models
3. Economic Capital for a Stylized Insurer
4. Natural Hedging of Longevity Risk
5. Conclusion
Economic Capital for a Stylized Insurer

Economic Capital Calculation

- Newly founded life insurer selling traditional products (term-life, endowment, annuity); Equivalence Principle; risk-neutral w.r.t. mortality risk

- Available Capital at time zero: \(AC_0 = E \)

- Available Capital at time one: \(AC_1 = E_Q^{Assets|F_1} - E_Q^{Liabilities|F_1} \)

- One-year mark-to-market approach for calculating Economic Capital:

\[
EC = \rho \left(\frac{AC_0 - AC_1}{p(0, 1)} \right)
\]

- \(\rho \): monetary risk measure \((L^2(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R})\)

 - Solvency Capital Requirement (Solvency II):

\[
EC = SCR = \text{VaR}_\alpha(L) = \arg \min_x \{P(L > x) \leq 1 - \alpha\}
\]

 - Conditional Tail Expectation (used within SST):

\[
EC = \text{CTE}_\alpha = \mathbb{E}[L|L \geq \text{VaR}_\alpha(L)]
\]
Economic Capital for a Stylized Insurer

Economic Capital Calculation

- Newly founded life insurer selling traditional products (term-life, endowment, annuity); Equivalence Principle; risk-neutral w.r.t. mortality risk
- Available Capital at time zero: \(AC_0 = E \)
- Available Capital at time one: \(AC_1 = \mathbb{E}^Q[\text{Assets}|\mathcal{F}_1] - \mathbb{E}^Q[\text{Liabilities}|\mathcal{F}_1] \)
- One-year mark-to-market approach for calculating Economic Capital:

\[
EC = \rho \left(\frac{AC_0 - AC_1}{\mathbb{E}[L]} \right)
\]

- \(\rho \): monetary risk measure \((L^2(\Omega, \mathcal{F}, \mathbb{P}) \rightarrow \mathbb{R}) \)
 - Solvency Capital Requirement (Solvency II):
 \[
 EC = SCR = \text{VaR}_\alpha(L) = \arg \min_x \{ \mathbb{P}(L > x) \leq 1 - \alpha \}
 \]
 - Conditional Tail Expectation (used within SST):
 \[
 EC = \text{CTE}_\alpha = \mathbb{E}[L|L \geq \text{VaR}_\alpha(L)]
 \]
Mortality estimation:
- U.S. female data (Human Mortality Database), year 1933-2007
- 46 generational life tables: 1963-2008, age: 0-95 \(\tau p_x(t_j), j = 1, \ldots, 46 \)
- Calibrate and forecast under:
 0 Deterministic mortality (Lee-Carter)
 1 Non-parametric model
 2 Parametric factor model

Financial market estimation:
- Financial portfolio: stock, 1-year, 3-year, 5-year, and 10-year gov. bond
- Financial market model: Extended Black-Scholes model with stochastic interest rates (Vasicek model)
- Calibrated to U.S. data from 01-1982 to 07-2012 using Kalman filter

50,000 simulations of \(A_1 \) and \(V_1 \) \(\Rightarrow \) \(AC_1 \) \(\Rightarrow \) \(EC \)
Economic Capital for a Stylized Insurer

Implementation

Mortality estimation:
- U.S. female data (Human Mortality Database), year 1933-2007
- 46 generational life tables: 1963-2008, age: 0-95 \(\tau p_x(t_j), j = 1, \ldots, 46 \)
- Calibrate and forecast under:
 0 Deterministic mortality (Lee-Carter)
 1 Non-parametric model
 2 Parametric factor model

Financial market estimation:
- Financial portfolio: stock, 1-year, 3-year, 5-year, and 10-year gov. bond
- Financial market model: Extended Black-Scholes model with stochastic interest rates (Vasicek model)
- Calibrated to U.S. data from 01-1982 to 07-2012 using Kalman filter

50,000 simulations of \(A_1 \) and \(V_1 \) \(\Rightarrow \) \(AC_1 \) \(\Rightarrow \) \(EC \)
Economic Capital for a Stylized Insurer

Implementation

Mortality estimation:
- U.S. female data (Human Mortality Database), year 1933-2007
- 46 generational life tables: 1963-2008, age: 0-95 \(\tau p_x(t_j), j = 1, \ldots, 46 \)
- Calibrate and forecast under:
 0 Deterministic mortality (Lee-Carter)
 1 Non-parametric model
 2 Parametric factor model

Financial market estimation:
- Financial portfolio: stock, 1-year, 3-year, 5-year, and 10-year gov. bond
- Financial market model: Extended Black-Scholes model with stochastic interest rates (Vasicek model)
- Calibrated to U.S. data from 01-1982 to 07-2012 using Kalman filter

50,000 simulations of \(A_1 \) and \(V_1 \) \(\Rightarrow \) \(AC_1 \) \(\Rightarrow \) \(EC \)
Equal weights in financial portfolio; $E = $20,000,000

<table>
<thead>
<tr>
<th>Term Life</th>
<th>x</th>
<th>i</th>
<th>$n_{x,i}^{\text{term/end/ann}}$</th>
<th>$B_{x,i}^{\text{term/end/ann}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>20</td>
<td>2,500</td>
<td>$100,000$</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>15</td>
<td>2,500</td>
<td>$100,000$</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td>2,500</td>
<td>$100,000$</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>5</td>
<td>2,500</td>
<td>$100,000$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endowment</th>
<th>x</th>
<th>i</th>
<th>$n_{x,i}^{\text{term/end/ann}}$</th>
<th>$B_{x,i}^{\text{term/end/ann}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>20</td>
<td>5,000</td>
<td>$50,000$</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>15</td>
<td>5,000</td>
<td>$50,000$</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td>5,000</td>
<td>$50,000$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annuities</th>
<th>x</th>
<th>i</th>
<th>$n_{x,i}^{\text{term/end/ann}}$</th>
<th>$B_{x,i}^{\text{term/end/ann}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>(35)</td>
<td>2,500</td>
<td>$18,000$</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>(25)</td>
<td>2,500</td>
<td>$18,000$</td>
<td></td>
</tr>
</tbody>
</table>

Economic capital:

<table>
<thead>
<tr>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% VaR</td>
<td>$99,870,175$</td>
<td>$100,584,985$</td>
</tr>
</tbody>
</table>
Economic Capital for a Stylized Insurer

Base Case

Equal weights in financial portfolio; $E = 20,000,000$

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>i</th>
<th>$n_{x,i}^{\text{term/end/ann}}$</th>
<th>$B_{x,i}^{\text{term/end/ann}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term Life</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
<td>2,500</td>
<td>$100,000$</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>15</td>
<td>2,500</td>
<td>$100,000$</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>10</td>
<td>2,500</td>
<td>$100,000$</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>5</td>
<td>2,500</td>
<td>$100,000$</td>
</tr>
<tr>
<td>Endowment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>20</td>
<td>5,000</td>
<td>$50,000$</td>
</tr>
<tr>
<td></td>
<td>45</td>
<td>15</td>
<td>5,000</td>
<td>$50,000$</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>10</td>
<td>5,000</td>
<td>$50,000$</td>
</tr>
<tr>
<td>Annuities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>(35)</td>
<td>2,500</td>
<td>$18,000$</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>(25)</td>
<td>2,500</td>
<td>$18,000$</td>
</tr>
</tbody>
</table>

Economic capital:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% VaR</td>
<td>$99,870,175$</td>
<td>$100,584,985$</td>
<td>$102,154,729$</td>
</tr>
</tbody>
</table>

Nan Zhu
Natural Hedging Examination
Optimal static hedge:

- Minimizing economic capital by changing weights in bonds/stock

Economic capital:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% VaR</td>
<td>$8,519,083</td>
<td>$15,507,323</td>
<td>$15,148,969</td>
</tr>
</tbody>
</table>

Optimal weights:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>0.5%</td>
<td>0.9%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1-year Bond</td>
<td>0.6%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>3-year Bond</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>5-year Bond</td>
<td>1.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>10-year Bond</td>
<td>97.9%</td>
<td>99.1%</td>
<td>99.3%</td>
</tr>
</tbody>
</table>
Optimal static hedge:

- Minimizing economic capital by changing weights in bonds/stock

Economic capital:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% VaR</td>
<td>$8,519,083</td>
<td>$15,507,323</td>
<td>$15,148,969</td>
</tr>
</tbody>
</table>

Optimal weights:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>0.5%</td>
<td>0.9%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1-year Bond</td>
<td>0.6%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>3-year Bond</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>5-year Bond</td>
<td>1.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>10-year Bond</td>
<td>97.9%</td>
<td>99.1%</td>
<td>99.3%</td>
</tr>
</tbody>
</table>
Optimal static hedge:
- Minimizing economic capital by changing weights in bonds/stock

Economic capital:

<table>
<thead>
<tr>
<th>95% VaR</th>
</tr>
</thead>
<tbody>
<tr>
<td>$8,519,083</td>
</tr>
</tbody>
</table>

Optimal weights:

<table>
<thead>
<tr>
<th></th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock</td>
<td>0.5%</td>
<td>0.9%</td>
<td>0.7%</td>
</tr>
<tr>
<td>1-year Bond</td>
<td>0.6%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>3-year Bond</td>
<td>0.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>5-year Bond</td>
<td>1.0%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>10-year Bond</td>
<td>97.9%</td>
<td>99.1%</td>
<td>99.3%</td>
</tr>
</tbody>
</table>
1 Introduction

2 Mortality Forecasting Models

3 Economic Capital for a Stylized Insurer

4 Natural Hedging of Longevity Risk

5 Conclusion
Optimal static hedge:

- Exposure in annuity/endowment ⇒ fixed
- Adjust exposure in term-life insurance n^{term}:
 - Minimize capital with optimizing financial risk
- Three cases: deterministic mortality vs. factor mortality model vs. non-parametric model
Optimal static hedge:
- Exposure in annuity/endowment ⇒ fixed
- Adjust exposure in term-life insurance n^{term}:
 - Minimize capital with optimizing financial risk
- Three cases: deterministic mortality vs. factor mortality model vs. non-parametric model
Natural Hedging of Longevity Risk

Observations

- Without systematic mortality, EC increases in n^{term}
- With factor mortality model, EC convex of n^{term} ($n^{\text{term}*} = 16,500$)
- **BUT** With non-parametric forecasting model, EC again is strictly increasing in n^{term}
 - Only a very mild effect of natural hedging observed

<table>
<thead>
<tr>
<th>Economic capital: ($n^{\text{term}} = 16,500$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>95% VaR</td>
</tr>
<tr>
<td>Deterministic Mortality</td>
</tr>
</tbody>
</table>

- Using the factor mortality model, adding mortality risk increases the optimal economic capital slightly (0.44%)
 - (Almost) perfect hedge of mortality risk with natural hedging
- Using the non-parametric mortality model, adding mortality risk increases the optimal economic capital a lot (64%)
 - Natural hedging does not work as well as we expect
 - Factor models too simplified
Natural Hedging of Longevity Risk

Observations

- Without systematic mortality, EC increases in n^{term}
- With factor mortality model, EC convex of n^{term} ($n^{\text{term}*} = 16,500$)
- BUT With non-parametric forecasting model, EC again is strictly increasing in n^{term}
 - Only a very mild effect of natural hedging observed

Economic capital: ($n^{\text{term}} = 16,500$)

<table>
<thead>
<tr>
<th>95% VaR</th>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$9,909,874$</td>
<td>$9,954,353$</td>
<td>$16,259,641$</td>
</tr>
</tbody>
</table>

- Using the factor mortality model, adding mortality risk increases the optimal economic capital slightly (0.44%)
 - (Almost) perfect hedge of mortality risk with natural hedging
- Using the non-parametric mortality model, adding mortality risk increases the optimal economic capital a lot (64%)
 - Natural hedging does not work as well as we expect
 - Factor models too simplified
Natural Hedging of Longevity Risk

Observations

- Without systematic mortality, EC increases in n^{term}
- With factor mortality model, EC convex of n^{term} ($n^{\text{term}*} = 16,500$)
- BUT With non-parametric forecasting model, EC again is strictly increasing in n^{term}
 - Only a very mild effect of natural hedging observed

Economic capital: ($n^{\text{term}} = 16,500$)

<table>
<thead>
<tr>
<th>Deterministic Mortality</th>
<th>Factor Model</th>
<th>Non-parametric Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9,909,874$</td>
<td>$9,954,353$</td>
<td>$16,259,641$</td>
</tr>
</tbody>
</table>

- Using the factor mortality model, adding mortality risk increases the optimal economic capital slightly (0.44%)
 - (Almost) perfect hedge of mortality risk with natural hedging
- Using the non-parametric mortality model, adding mortality risk increases the optimal economic capital a lot (64%)
 - Natural hedging does not work as well as we expect
 - Factor models too simplified
Conclusion

1 Introduction

2 Mortality Forecasting Models

3 Economic Capital for a Stylized Insurer

4 Natural Hedging of Longevity Risk

5 Conclusion
Conclusion

Natural hedging proposed to handle longevity risk

- Positive results from existing literature
 - Use factor mortality models
 - Neglect disparate mortality evolutions under different ages
 - Entail potential biases

- We compare results derived from both parametric factor and non-parametric stochastic mortality model
 - Concur the existing literature when the factor model used
 - With non-parametric model, natural hedging much less effective

How much should we trust model-based results?

- Advantages: simple, easy to use, etc.
- CAVEAT: important features might be stripped
Natural hedging proposed to handle longevity risk

- Positive results from existing literature
 - Use factor mortality models
 - Neglect disparate mortality evolutions under different ages
 - Entail potential biases

- We compare results derived from both parametric factor and non-parametric stochastic mortality model
 - Concur the existing literature when the factor model used
 - With non-parametric model, natural hedging much less effective

How much should we trust model-based results?

- **Advantages**: simple, easy to use, etc.
- **CAVEAT**: important features might be stripped