Paying for a Refund
Return-of-Premium Contracts in Insurance

Florian Englmaier
University of Wuerzburg

Jörg Schiller
University of Hohenheim

Frauke von Bieberstein
University of Bern

ARIA Annual Meeting
Washington, August 2013
1. Introduction

2. How not to explain premium returns
 - Risk aversion (Expected Utility Theory)
 - Reference dependence

3. Explanations for the use of premium returns
 - Regret
 - Alternative explanations

4. Conclusion
Real world contracts and choices are sometimes difficult to reconcile with standard preferences and beliefs.

- DellaVigna and Malmendier (2006) show that contract choices for gym memberships are inconsistent with a standard rational preferences.
 → Explanation: Hyperbolic consumer preferences.

- Sydnor (2010) shows that homeowners often purchase insurance contracts with low deductibles at prices significantly above the expected value.
 → Explanation: Overweighting of probabilities and loss aversion

- Many people prefer a tax return at the end of the year to higher monthly income, although the IRA does not pay interest on the return.

We take a closer look at insurance contracts that entail different kinds of ex post payments usually labeled as "premium returns".
In insurance markets two types of return-of-premium contracts can be observed.

- **Contingent premium returns**: Are contingent on the fact that a specific policyholder has not filed a claim during a given time period.

 - Incentive device e.g. in health insurance (substitute for deductibles)

 - In disability and casualty insurance incentive problems are less prevalent, but return-of-premium contracts can be observed.

- **Unconditional premium returns**: Refund independent of claiming behavior.

 - Combination of a traditional insurance contract with an additional saving component that guarantees an unconditional payment at the end of the contract.

 → Rates of return for these contracts are well below easily achievable market returns.
Standard model

- Risk-averse consumer with utility function $u()$, $u' > 0$, $u'' < 0$ and an initial wealth w_0
- Loss L occurs with probability π
- Interest rate is zero
- Insurance contract (one period) consists of
 - a coinsurance rate α and
 - a premium $P_0 = \alpha \lambda \pi L$ ($\lambda \geq 1$ loading factor)

Maximization problem

$$\max_{\alpha} E[u(\alpha)] = (1 - \pi) \cdot u(w_0 - P_0) + \pi \cdot u(w_0 - P_0 - (1 - \alpha)L)$$

- Mossin’s Theorem (1968):
 $$\alpha^* = 1 \quad \text{if} \quad \lambda = 1$$
 $$\alpha^* < 1 \quad \text{if} \quad \lambda > 1$$
Conditional premium return

- The absolute amount $B \geq 0$ is paid at the end of period in the case of no loss.

$$\max_{\alpha,B} E[u(\alpha,B)] = (1 - \pi) \cdot u(w_0 - P_0 - (1 - \pi)B + B) + \pi \cdot u(w_0 - P_0 - (1 - \pi)B - (1 - \alpha)L)$$

- Since:

$$\frac{\partial E[u(\alpha,B)]}{\partial B} \bigg|_{B=0} \leq 0 \quad \forall \alpha \in [0,1]$$

→ Any conditional premium return $B > 0$ weakly decreases expected utility of a risk-averse consumer.
Unconditional premium return

- The amount $B \geq 0$ is paid at the end of period irrespective of the loss realization.

\[
E[u(\alpha, B)] = (1 - \pi) \cdot u \left(w_0 - P_0 - \frac{B}{1 - \tau} + B \right) + \pi \cdot u \left(w_0 - P_0 - \frac{B}{1 - \tau} - (1 - \alpha) L + B \right)
\]

- The unconditional premium return does not entail any risk transfer.

- It just affects the certain level of final wealth.

 \rightarrow The unconditional premium return will be purchased ($B > 0$) if the rate of return (τ) is above the interest rate ($\tau > 0$).

Utility is derived from two sources:
- Standard consumption utility depending on wealth level \(w \)
- Loss-gain utility from comparing the final wealth in different states with a reference point \(r \)

\[
E[u(w, r)] = u(w) + \mu(u(w) - u(r))
\]

The reference point is the full distribution of recent expectations.

→ There is not one, there are many reference points (every possible outcome)
2. How not to explain premium returns

Reference dependence

Unconditional premium return

- In the model of Köszegi and Rabin a sure gain and an equally sized sure loss will cancel each other out.
 → The unconditional premium return is equivalent to a standard insurance contract.

Conditional premium return

- Due to loss aversion, even a risk neutral individual prefers to buy insurance (Köszegi and Rabin, 2007)
- However, due to loss aversion, the optimal insurance contract entails full coverage $\alpha^* = 1$ but no conditional premium return ($B^* = 0$), as the latter increases risk.
A regret averse individual experiences a disutility ex-post when his ex-ante decision leads to a suboptimal result.

Approach of Braun and Mürmann (2004):

\[\text{RTEU} = E[u(w) - k \cdot g(u(w^\text{max}) - u(w))] \quad \text{with } k > 0 \]

Disutility \(g(\cdot) \) is convex. The factor \(k \) measures the extent of regret aversion.

Braun and Mürmann (2004) show for standard insurance contracts that regret averse individuals purchase partial insurance \((\alpha^* < 1) \) even at a fairly priced premium \((\lambda = 1) \).

An unconditional premium return only affects the sure wealth level \(w \).

→ Regret preferences cannot explain the demand for unconditional premium returns.
Conditional premium returns

- Final wealth levels:

<table>
<thead>
<tr>
<th></th>
<th>No loss (1-(\pi))</th>
<th>Loss ((\pi))</th>
</tr>
</thead>
<tbody>
<tr>
<td>No insurance ((\alpha=0))</td>
<td>(w_0)</td>
<td>(w_0 - L)</td>
</tr>
<tr>
<td>Insurance ((\alpha,B))</td>
<td>(w_0 - P_0 - (1-\pi)B + B)</td>
<td>(W - P_0 - (1-\pi)B - (1-\alpha)L)</td>
</tr>
</tbody>
</table>

\[
\text{RTEU}[\alpha,B] = (1 - \pi) \cdot [u(w_0 - P_0 + \pi B) - k \cdot g(u(w_0) - u(w_0 - P_0 + \pi B))] \\
+ \pi \cdot [u(w_0 - P_0 - (1 - \pi)B - (1 - \alpha)L) - k \cdot g(u(w_0 - P_0) - u(w_0 - P_0 - (1 - \pi)B - (1 - \alpha)L))]
\]

- Increasing the premium return above \(B = 0\) is increasing RTEU for a given level \(\alpha\) if

\[
k > \frac{u'(w_0 - P_0 - (1 - \alpha)L) - u'(w_0 - P_0)}{g'_L + g'_L}
\]

\(\rightarrow\) A regret averse individual prefers a strictly positive premium return (\(B^* > 0\)) if regret aversion (\(k\)) is sufficiently high.
3. Explanations for the use of premium returns

Alternative explanations

Supply-side factors

- Due to higher premium payments, return-of-premium contracts may entail higher commissions, which might give higher selling incentives for agents (irrespective of higher loadings).
 → Consumers might be willing to buy contracts if they misjudge the desirability of the savings component embedded into a return-of-premium contracts.
- People buying these contracts might be better risks, therefore premiums might be very attractive.
 → Advantageous selection

Time inconsistency problems

- People often state that they want to increase their savings but they "never get around" (Thaler and Sunstein, 2008).
- If they had access to a commitment device, they would be willing to pay a premium for this (Ashraf et al., 2006).
 → Insurance products with saving components might be such a commitment vehicle.
Many insurance contracts entail a return of premium component.

Conditional premium returns can be explained by regret preferences.

→ In the case of no loss, consumers receive a benefit which lowers their regret from their decision to buy insurance.

Unconditional premium returns are not easily reconcilable with standard models.

If consumers

– are confused and mistakenly take up inferior savings vehicles, just forbidding return-of-premium contracts would improve efficiency.

– have time inconsistency problems, efficiency can be improved by additional saving components (unconditional premium returns).