Motivation

- No penalty against policyholder’s misrepresentation on its choice of a contract (e.g., Rothschild and Stiglitz, 1976)
 → Penalty against claim misrepresentation is well documented
Motivation

- No penalty against policyholder’s misrepresentation on its choice of a contract (e.g., Rothschild and Stiglitz, 1976)
 → Penalty against claim misrepresentation is well documented

- The presence of contract law and insurers’ claim adjustment
 → Penalty against misrepresentation/concealment in insurance market
Motivation

- No penalty against policyholder’s misrepresentation on its choice of a contract (e.g., Rothschild and Stiglitz, 1976)
 → Penalty against claim misrepresentation is well documented

- The presence of contract law and insurers’ claim adjustment
 → Penalty against misrepresentation/concealment in insurance market

- The introduction of post-loss testing (claim adjustment) to self-selection model
Motivation

- No penalty against policyholder’s misrepresentation on its choice of a contract (e.g., Rothschild and Stiglitz, 1976)
 → Penalty against claim misrepresentation is well documented

- The presence of contract law and insurers’ claim adjustment
 → Penalty against misrepresentation/concealment in insurance market

- The introduction of post-loss testing (claim adjustment) to self-selection model

- The relationship between post-loss testing and ex-ante testing (underwriting)
Testing after entering a contract

Testing after entering a contract

Testing after entering a contract

- Kessler, Lulfesmann, and Schmitz (2005) and Kofman and Lawarree (1993): The impact of limited liability on the impact of ex-post testing
Testing after entering a contract

- Kessler, Lulfesmann, and Schmitz (2005) and Kofman and Lawarree (1993): The impact of limited liability on the impact of ex-post testing

Q. Does a penalty against misrepresentation affect equilibrium in insurance market?
Adverse Selection: Rothschild and Stiglitz (1976)

- Low-risk \Rightarrow Partial coverage
- High-risk \Rightarrow Full coverage
Adverse Selection: Rothschild and Stiglitz (1976)

- Low-risk ⇒ Partial coverage
- High-risk ⇒ Full coverage
Adverse Selection: Rothschild and Stiglitz (1976)

- Low-risk \Rightarrow Partial coverage
- High-risk \Rightarrow Full coverage

Risk Classification

Contribution
Contribution

- Adverse selection is completely eliminated when a post-loss test is used
Contribution

- Adverse selection is completely eliminated when a post-loss test is used.

- Low-risk policyholders receive a positive rebate (participating dividend as return of excess premium).
Contribution

- Adverse selection is completely eliminated when a post-loss test is used
- Low-risk policyholders receive a positive rebate (participating dividend as return of excess premium)
- The market outcome approximates the first-best if a total loss of wealth causes an infinite utility penalty.
Contribution

- Adverse selection is completely eliminated when a post-loss test is used.

- Low-risk policyholders receive a positive rebate (participating dividend as return of excess premium).

- The market outcome approximates the first-best if a total loss of wealth causes an infinite utility penalty.

- In the presence of a post-loss test, underwriting may contribute sustaining a separating equilibrium especially when rebate payment is costly.
Competitive Insurance Market
Competitive Insurance Market

- Private information: buyers’ risk type (high-risk or low-risk)
Private information: buyers’ risk type (high-risk or low-risk)

Public information:
- The probability of loss
- The proportion of the risk type
- The cost of post-loss test and its accuracy
Competitive Insurance Market

- Private information: buyers’ risk type (high-risk or low-risk)

- Public information:
 - The probability of loss
 - The proportion of the risk type
 - The cost of post-loss test and its accuracy

- Asymmetric post-loss test (claim adjustment):
 - Low-risk policyholders are always identified as a low-risk
 - High-risk policyholders may be misclassified into a low-risk
Competitive Insurance Market

The Structure of Competitive Insurance Market
Competitive Insurance Market

The Structure of Competitive Insurance Market

- Risk-neutral insurers offer a single contract including their decision on post-loss test.
Competitive Insurance Market

The Structure of Competitive Insurance Market

- Risk-neutral insurers offer a single contract including their decision on post-loss test.
- Individuals choose one contract.
Competitive Insurance Market

The Structure of Competitive Insurance Market

- Risk-neutral insurers offer a single contract including their decision on post-loss test.
- Individuals choose one contract.
- Insureds who file a claim are tested for misrepresentation if the contract imposes post-loss test. If the test reveals misrepresentation, the policy is voided. Otherwise, the claim is paid.
The Structure of Competitive Insurance Market

- Risk-neutral insurers offer a single contract including their decision on post-loss test.

- Individuals choose one contract.

- Insureds who file a claim are tested for misrepresentation if the contract imposes post-loss test. If the test reveals misrepresentation, the policy is voided. Otherwise, the claim is paid.

- Insurers are allowed to pay policyholders a premium rebate without cost if there is any surplus.
Notations and Assumptions

- The proportion of HR and LR: λ and $(1 - \lambda)$
- Individual’s initial wealth: $W > 0$
- The probability of loss: $0 < \pi_L < \pi_H < 1$
- Fixed loss amount: $D > 0$
- Utility function: u where $u' > 0$ and $u'' < 0$
Notations and Assumptions

- The proportion of HR and LR: λ and $(1 - \lambda)$
- Individual’s initial wealth: $W > 0$
- The probability of loss: $0 < \pi_L < \pi_H < 1$
- Fixed loss amount: $D > 0$
- Utility function: u where $u’ > 0$ and $u” < 0$
- The per claim testing expenditure of a post-loss test: e
- The accuracy of a post-loss test: $p(0) = 0$, $p’(e) > 0$ and $p”(e) < 0$, $p(e) < 1$
Notations and Assumptions

- The proportion of HR and LR: λ and $(1 - \lambda)$
- Individual’s initial wealth: $W > 0$
- The probability of loss: $0 < \pi_L < \pi_H < 1$
- Fixed loss amount: $D > 0$
- Utility function: u where $u' > 0$ and $u'' < 0$
- The per claim testing expenditure of a post-loss test: e
- The accuracy of a post-loss test: $p(0) = 0$, $p'(e) > 0$ and $p''(e) < 0$, $p(e) < 1$
- Policy: $C \equiv (t, l, \pi)$ where a per policy testing fee, t
Policy with Post-loss Testing

- High-risk
 - Policy without post-loss test
 - 1 - \(\pi_H \) No loss
 - \(\pi_H \) Loss
 - Claim paid
 - Policy with post-loss test
 - 1 - \(\pi_H \) No loss
 - \(\pi_H \) Loss
 - 1 - \(p \) Claim paid
 - \(p \) Policy voided
Post-loss Test

\[U^H(C_L) = \pi_H (1 - p(e)) u(W_{L1}) + \pi_H p(e) u(W_{L2}) + (1 - \pi_H) u(W_{NL}) \]

where we use shorthand notations for terminal wealth in the states:

- \(W_{L1} = W_0 + (1 - \pi_L) l - t - D \)
- \(W_{L2} = W_0 - D \)
- \(W_{NL} = W_0 - \pi_L l - t \)

We look for \(p \) such that the self-selection constraint satisfies:

\[U^H(C_H) \geq U^H(C_L) \]
A competitive Nash equilibrium exists if $e^* \pi_L \leq \mu$, and offers two full-coverage separating contracts: $C_H = (0, D, \pi_H)$ and $C_L^* = (e^* \pi_M, D, \pi_L)$. Since the contract C_L^* involves rebate Π at the end, the net test fee is $e^* \pi_L$ where

$$p(e^*) = \frac{\pi_H - \pi_L}{\pi_H(1 - \pi_L)}.$$

and

$$\Pi = e^* \lambda (\pi_H - \pi_L).$$
Proposition (Post-loss testing with infinite utility penalty)

Under $D = W_0$ and $u(0) = -\infty$, a competitive Nash equilibrium always exists and approximates the first-best outcome. Two separating policies are offered: one offers $C_H = (0, D, \pi_H)$ without test; the other offers $C_L^* = (\varepsilon, D, \pi_L)$ with arbitrarily small test fee ε.
The cost of rebate payment defined by the fraction of rebate payment received by a policyholder, $\tau \in [0, 1)$:
The cost of rebate payment defined by the fraction of rebate payment received by a policyholder, $\tau \in [0, 1)$:

- No participating dividend policy ($\tau = 0$)
The Cost of Rebate Payment

The cost of rebate payment defined by the fraction of rebate payment received by a policyholder, $\tau \in [0, 1)$:

- No participating dividend policy ($\tau = 0$)
- Costly rebate payment such as administration costs, agency costs, and tax ($\tau < 1$)
The Cost of Rebate Payment

The cost of rebate payment defined by the fraction of rebate payment received by a policyholder, $\tau \in [0, 1)$:

- No participating dividend policy ($\tau = 0$)
- Costly rebate payment such as administration costs, agency costs, and tax ($\tau < 1$)

Underwriting becomes relevant when $\tau < 1$, because underwriting potentially reduces the test fee charged by an insurer up front.
Policy with Underwriting and Post-loss Testing

- **High-risk**
 - **Policy without post-loss test**
 - \(p_1 \)
 - \(1-p_1 \)
 - **Policy with post-loss test**
 - **Underwriting**
 - \(\pi_H \)
 - \(1-\pi_H \)
 - **No loss**
 - **Loss**
 - **Claim paid**
 - **Policy voided**

Kamiya and Schmit

Misrepresentation
Policy with Underwriting and Post-loss Testing

Underwriting characteristics:
Underwriting characteristics:

- Underwriting is defined by insurer’s expenditure on the test and the probability that a high-risk individual who applies for C_L is correctly identified as a high-risk.
- Assume low-risk individuals are always correctly classified as low-risk.
- Assume an underwriting fee is charged to an applicant only when an applicant purchases a policy based on an underwriting test.
Policy with Underwriting and Post-loss Testing

Underwriting characteristics:
- Underwriting is defined by insurer’s expenditure on the test and the probability that a high-risk individual who applies for C_L is correctly identified as a high-risk.
- Assume low-risk individuals are always correctly classified as low-risk.
- Assume an underwriting fee is charged to an applicant only when an applicant purchases a policy based on an underwriting test.

Notations:
- Insurer’s per application expenditure on underwriting and per claim expenditure on a post-loss test are denoted by e_1 and e_2.
- The per policy fee on an underwriting test and that on a post-loss test are t_1 and t_2.
- The accuracy of the tests are denoted by $p_1(e_1)$ and $p_2(e_2)$.
- Assume $p(0) = 0$, $p'(e_i) > 0$ and $p''(e_i) < 0$, $p(e_i) < 1$ for $i = 1, 2$.
Policy with Underwriting and Post-loss Testing

Cost and benefit of underwriting:
Cost and benefit of underwriting:

- An underwriting test brings the average loss probability down and decreases the charged post-loss test fee t_2 to:

\[
e_2^* \pi'_M \equiv e_2^* \left[\lambda (1 - p_1) \pi_H + (1 - \lambda (1 - p_1)) \pi_L \right]
\]
Cost and benefit of underwriting:

- An underwriting test brings the average loss probability down and decreases the charged post-loss test fee t_2 to:

$$e_2^* \pi'_M \equiv e_2^* [\lambda(1 - p_1) \pi_H + (1 - \lambda(1 - p_1)) \pi_L]$$

- The per policy fee on underwriting is defined by:

$$t_1 = \frac{e_1}{1 - \lambda}$$
Policy with Underwriting and Post-loss Testing

Condition for using underwriting test, $t_1 + t_2 - \tau \Pi_2 < t^* - \tau \Pi$, can be reduced to:

$t_1 < p_1 \Pi (1 - \tau)$.
Policy with Underwriting and Post-loss Testing

Condition for using underwriting test, \(t_1 + t_2 - \tau \Pi_2 < t^* - \tau \Pi \), can be reduced to:

\[
t_1 < p_1 \Pi (1 - \tau).
\]

Proposition (Existence of Separating Policies)

There exists a competitive Nash equilibrium where both an underwriting and a post-loss test are employed in a full-coverage contract, \(C_L^ \), if both \(t_1 + t_2 - \tau \Pi_2 \leq \mu \) and \(t_1 < p_1 \Pi (1 - \tau) \) are satisfied.*

The optimal underwriting is unique at: \(t_1' = p_1' \Pi (1 - \tau) \) where the per policy marginal fee of underwriting equals the marginal benefit of reducing unpaid rebate.
Implication of Costly Rebate Payment
Implication of Costly Rebate Payment

Introducing an underwriting test in the presence of a post-loss test is Pareto improving.
Implication of Costly Rebate Payment

- Introducing an underwriting test in the presence of a post-loss test is Pareto improving.

- Welfare effect of underwriting must be discussed with the implementation of claim management.
Implication of Costly Rebate Payment

- Introducing an underwriting test in the presence of a post-loss test is Pareto improving.

- Welfare effect of underwriting must be discussed with the implementation of claim management.

- Competition of the development of underwriting techniques is a driving force of reducing premiums.
Summary

The effect of the self-selection constraint on the equilibrium configuration is striking in several respects:
Summary

The effect of the self-selection constraint on the equilibrium configuration is striking in several respects:

- Market equilibrium is unique and consists of full-coverage contracts.
Summary

The effect of the self-selection constraint on the equilibrium configuration is striking in several respects:

- Market equilibrium is unique and consists of full-coverage contracts.
- With finite utility penalty, the equilibrium contract for low-risk individuals earns strictly positive rebate payment, which is necessary to send a signal.
The effect of the self-selection constraint on the equilibrium configuration is striking in several respects:

- Market equilibrium is unique and consists of full-coverage contracts.
- With finite utility penalty, the equilibrium contract for low-risk individuals earns strictly positive rebate payment, which is necessary to send a signal.
- The market outcome approximates the first-best outcome when a contract cancellation causes a negative infinite utility.
Summary

The effect of the self-selection constraint on the equilibrium configuration is striking in several respects:

- Market equilibrium is unique and consists of full-coverage contracts.
- With finite utility penalty, the equilibrium contract for low-risk individuals earns strictly positive rebate payment, which is necessary to send a signal.
- The market outcome approximates the first-best outcome when a contract cancellation causes a negative infinite utility.
- Underwriting may contribute to attaining separating equilibrium by reducing the cost of the post-loss test.
Thank You