A Theoretical Extension of the Consumption-based CAPM

Model *

Jingyuan Li
School of Management
Huazhong University of Science and Technology
Wuhan 430074, China
Email: jingyuanht@yahoo.com.cn

Georges Dionne
Canada Research Chair in Risk Management, HEC Montréal, CIRRELT, and CIRPÉE,
Canada
Email: georges.dionne@hec.ca

January 25, 2011

Abstract

We extend the Consumption-based CAPM (C-CAPM) model for representative agents with different risk attitudes. We introduce the concept of expectation dependence and show that for a risk averse representative agent, it is the first-degree expectation dependence rather than the covariance that determines C-CAPM’s riskiness. We extend the assumption of risk aversion to prudence and provide another dependence condition to obtain the values of asset price and equity premium. Results are generalized to higher-degree risk changes and higher-order risk averse representative agents, and are linked to the equity premium puzzle.

Key words: Consumption-based CAPM; Risk premium; Equity premium puzzle;
Expectation dependence
JEL classification: D51; D80; G12

*This work is supported by the National Science Foundation of China (General Program) 70602012 and by the Social Science Research Council of Canada (SSRCC).
1 Introduction

Consumption-based capital asset pricing model (C-CAPM), developed in Rubinstein (1976), Lucas (1978), Breeden (1979) and Grossman and Shiller (1981), relates the risk premium on each asset to the covariance between the asset return and the intertemporal marginal rate of substitution of a decision maker. The most important comparative statics results for C-CAPM is how an asset’s price or equity premium changes as the quantity of risk and the price of risk change. The results of comparative statics analysis thus form the basis for much of our understanding of the sources of changes in consumption (macroeconomic) risk and risk aversion that drive asset prices and equity premia.

The two objectives of this study are to propose a new theoretical framework for C-CAPM and to extend its comparative statics. We use general utility functions and probability distributions to investigate C-CAPM. Our model provides insight into the basic concepts that determine asset prices and equity premia.

The C-CAPM pricing rule is sometimes interpreted as implying that the price of an asset with a random payoff falls short of its expected payoff if and only if the random payoff positively correlates with consumption. Liu and Wang (2007) show that this interpretation of C-CAPM is not generally correct by presenting a counterexample. We introduce more powerful statistical tools to obtain the appropriate dependence between asset payoff and consumption. We first discuss the concept of expectation dependence developed by Wright (1987) and Li (2011). We show that, for a risk averse representative agent, it is the first-degree expectation dependence between the asset’s payoff and consumption rather than the covariance that determines C-CAPM’s riskiness. Our result also reinterprets the covariance between an asset’s payoff and the marginal utility of consumption in terms of the expectation dependence between the payoff and consumption itself. We extend the assumption of risk aversion to prudence and provide another dependence condition. Finally, we interpret C-CAPM in a general setting: for the \(i^{th}\)-degree risk averse representative agent,\(^1\) with \(i = 2, \ldots, N + 1\), it is the \(N^{th}\)-order expectation dependence that determines C-CAPM’s riskiness.

\(^1\)Risk aversion in the traditional sense of a concave utility function is indicated by \(i = 2\), whereas \(i = 3\) gives downside risk aversion in the sense of Menezes, Geiss and Tressler (1980). \(i^{th}\)-degree risk aversion is equivalent to preferences satisfying risk apportionment of order \(i\). See Ekern (1980) and Eeckhoudt and Schlesinger (2006) for more discussions.
Our study relates to Gollier and Schlesinger (2002) who examine asset prices in a representative-agent model of general equilibrium with two differences. First, we study asset price and equity premium driven by macroeconomic risk as in the traditional C-CAPM model while Gollier and Schlesinger’s model considers the relationship between the riskiness of the market portfolio and its expected return. Second, Gollier and Schlesinger (2002)”s model is a static model whereas our results rest on a dynamic framework.

Our study also extends the literature that examines the effects of higher-degree risk changes on the macroeconomy. Eeckhoudt and Schlesinger (2006) investigate necessary and sufficient conditions on preferences for a higher-degree change in risk to increase saving. Our study provides necessary and sufficient conditions on preferences for a higher-degree change in risk to set asset prices and equity premia.

The paper proceeds as follows. Section 2 introduces several concepts of dependence. Section 3 provides a reinterpretation of C-CAPM for risk averse representative agents. Section 4 extends the results of Section 3 to prudent and higher-order risk averse agents respectively. Section 5 discusses the results in relation to local indexes of risk aversion and Section 6 interprets the results in terms of the equity premium puzzle and concludes the paper.

2 Concepts of dependence

The concept of correlation coined by Galton (1886) had served as the only measure of dependence during the first 70 years of the 20th century. However correlation is too weak to obtain meaningful conclusions in many economic and financial applications. For example, covariance is a poor tool for describing dependence for non-normal distributions. Since Lehmann’s introduction of the concept of quadrant dependence in 1966, stronger measures of dependence have received much attention in the statistical literature\(^2\).

Suppose \(\tilde{x} \times \tilde{y} \in [a, b] \times [d, e]\), where \(a, b, d\) and \(e\) are finite. Let \(F(x, y)\) denote the joint and \(F_X(x)\) and \(F_Y(y)\) the marginal distributions of \(\tilde{x}\) and \(\tilde{y}\). Lehmann (1966) introduces the following concept to investigate positive dependence.

Definition 2.1 (Lehmann, 1966) \((\tilde{x}, \tilde{y})\) is positively quadrant dependent, written \(PQD(\tilde{x}, \tilde{y})\), if

\[
F(x, y) \geq F_X(x)F_Y(y) \quad \text{for all} \quad (x, y) \in [a, b] \times [d, e].
\]

\(^2\)For surveys of the literature, we refer to Joe (1997), Mari and Kotz (2001) and Embrechts (2009).
The above inequality can be rewritten as
\[F_X(x|\tilde{y} \leq y) \geq F_X(x) \] (2)
and an interpretation of definition (2.1) is provided by Lehmann as follows: “knowledge of \(\tilde{y} \) being small increases the probability of \(\tilde{x} \) being small”. PQD has its interest in modeling dependent risks because it can take into account the simultaneous downside (upside) evolution of risks. The marginal and the conditional CDFs can be changed simultaneously\(^3\).

Wright (1987) introduced the following related concept of dependence into the economics literature.

Definition 2.2 If
\[FED(\tilde{x}|y) = [E\tilde{x} - E(\tilde{x}|\tilde{y} \leq y)] \geq 0 \text{ for all } y \in [d, e], \] (3)
and there is at least some \(y_0 \) in some set \(S \) with \(\text{prob}(S) > 0 \), for which a strong inequality holds, then \(\tilde{x} \) is positive first-degree expectation dependent on \(\tilde{y} \).

The family of all distributions \(F \) satisfying (3) will be denoted by \(\mathcal{F}_1 \). Similarly, \(\tilde{x} \) is negative first-degree expectation dependent on \(\tilde{y} \) if (3) holds with the inequality sign reversed. The totality of negative first-degree expectation dependent distributions will be denoted by \(\mathcal{G}_1 \).

Wright (1987, page 113) interprets negative first-degree expectation dependence as follows: “when we discover \(\tilde{y} \) is small, in the precise sense that we are given the truncation \(\tilde{y} \leq y \), our expectation of \(\tilde{x} \) is revised upward”. Having \(\tilde{x} \) positively (negatively) first-degree expectation dependent on \(\tilde{y} \) is a stronger condition than positive (negative) quadrant dependence between \(\tilde{x} \) and \(\tilde{y} \), but a weaker condition than correlation (see Wright (1987) and Li (2011) for discussions of these concepts and examples).

Li (2011) proposes the following weaker dependence measure:

Definition 2.3 If
\[SED(\tilde{x}|y) = \int_{d}^{y} [E\tilde{x} - E(\tilde{x}|\tilde{y} \leq t)] F_Y(t) dt \] (4)
\[= \int_{d}^{y} FED(\tilde{x}|t) F_Y(t) dt \geq 0 \text{ for all } y \in [d, e], \]
then \(\tilde{x} \) is positive second-degree expectation dependent on \(\tilde{y} \).

\(^3\)Portfolio selection problems with positive quadrant dependency have been explored by Pellerey and Semeraro (2005) and Dachraoui and Dionne (2007), among others. Pellerey and Semeraro (2005) assert that a large subset of the elliptical distributions class is PQD. For more examples, see Joe (1997).
The family of all distributions F satisfying (4) will be denoted by \mathcal{F}_2. Similarly, \tilde{x} is negative second-degree expectation dependent on \tilde{y} if (4) holds with the inequality sign reversed, and the totality of negative second-degree expectation dependent distributions will be denoted by \mathcal{G}_2.

It is obvious that $\mathcal{F}_1 \subseteq \mathcal{F}_2$ and $\mathcal{G}_1 \subseteq \mathcal{G}_2$ but the converse is not true. Because \tilde{x} and \tilde{y} are positively correlated when (see Lehmann 1966, lemma 2)
\[
\text{cov}(\tilde{x}, \tilde{y}) = \int_a^b \int_d^e (F(x, y) - F_X(x)F_Y(y))dxdy = \int_d^e \text{FED}(\tilde{x}|t)F_Y(t)dt \geq 0,
\]
then $\text{cov}(\tilde{x}, \tilde{y}) \geq 0$ is only a necessary condition for $(\tilde{x}, \tilde{y}) \in \mathcal{F}_2$ but the converse is not true. Comparing (4) and (5), we know that $\text{cov}(\tilde{x}, \tilde{y})$ is the 2nd central cross moment of \tilde{x} and \tilde{y}, while $\text{SED}(\tilde{x}|y)$ is related to 2nd central cross lower partial moment of \tilde{x} and \tilde{y} which can be explained as a measure of downside risk computed as the average of the squared deviations below a target.

Rewriting $1^{\text{th}} \text{ED}(\tilde{x}|y) = F\text{ED}(\tilde{x}|y), 2^{\text{th}} \text{ED}(\tilde{x}|y) = \text{SED}(\tilde{x}|y) = \int_d^e F\text{ED}(\tilde{x}|t)F_Y(t)dt$, repeated integrals yield:
\[
N^{\text{th}} \text{ED}(\tilde{x}|y) = \int_d^y (N-1)^{\text{th}} \text{ED}(\tilde{x}|t)dt, \text{ for } N \geq 3.
\]

Definition 2.4 (Li 2011) If $k^{\text{th}} \text{ED}(\tilde{x}|e) \geq 0$, for $k = 2, ..., N-1$ and
\[
N^{\text{th}} \text{ED}(\tilde{x}|y) \geq 0 \text{ for all } y \in [d, e],
\]
then \tilde{x} is positive N^{th}-order expectation dependent on \tilde{y} ($N^{\text{th}} \text{ED}(\tilde{x}|y)$).

The family of all distributions F satisfying (7) will be denoted by \mathcal{F}_N. Similarly, \tilde{x} is negative N^{th}-order expectation dependent on \tilde{y} if (7) holds with the inequality sign reversed, and the totality of negative N^{th}-order expectation dependent distributions will be denoted by \mathcal{G}_N. From this definition, we know that $\mathcal{F}_{N-1} \subseteq \mathcal{F}_N$ and $\mathcal{G}_{N-1} \subseteq \mathcal{G}_N$ but the converse is not true. N^{th}-order expectation dependence is related to N^{th}-order central cross lower partial moment of \tilde{x} and \tilde{y} (See, Li (2011) for more details). Several recent researches in finance have focused on estimators of higher-order moments and comoments of the return distribution (i.e. coskewness and cokurtosis) and showed that these estimates generate a better explanation of investors’ portfolios. (See, Martellini and Ziemann (2010) for more details).

For our purpose, comparative expectation dependence has to be defined. Sibuya (1960) introduces the concept of dependence function Ω_F:
\[
\Omega_F = \frac{F(x, y)}{F_X(x)F_Y(y)}.
\]
We propose the following definition, which generalizes Sibuya’s (1960) definition, to quantify comparative expectation dependence.

Definition 2.5 Define $i^{th} ED_F$ and $i^{th} ED_H$, for $i = 1, \ldots, N$, as the i^{th} expectation dependence under distribution $F(x, y)$ and $H(x, y)$ respectively. Distribution $F(x, y)$ is more first-degree expectation dependent than $H(x, y)$, if and only if $FED_F(\tilde{x}|y)F_Y(y) \geq FED_H(\tilde{x}|y)H_Y(y)$ for all $y \in [d, e]$. Distribution $F(x, y)$ is more N^{th}-order expectation dependent than $H(x, y)$ for $N \geq 2$, if $k^{th} ED_F(\tilde{x}|e) \geq k^{th} ED_H(\tilde{x}|e)$, for $k = 2, \ldots, N - 1$ and

\[N^{th} ED_F(\tilde{x}|y) \geq N^{th} ED_H(\tilde{x}|y) \text{ for all } y \in [d, e]. \tag{9} \]

When $N = 1$, $F(x, y)$ is more first-degree expectation dependent than $H(x, y)$ if

\[F(x, y) - F_X(x)F_Y(y) \leq H(x, y) - H_X(x)H_Y(y). \tag{10} \]

Hence $\Omega_F \leq \Omega_H$ is a sufficient condition for $F(x, y)$ having more first-degree expectation dependent than $H(x, y)$.

\section{C-CAPM for a risk averse representative agent}

\subsection{Consumption-based asset pricing model}

The well known consumption-based asset pricing model can be expressed as the following two equations (see e.g. Cochrane 2005, page 13-14)

\[p_t = \frac{E_t \tilde{x}_{t+1}}{R^f} + \beta \frac{\text{cov}_t[u'(\tilde{c}_{t+1}), \tilde{x}_{t+1}]}{u'(c_t)} \tag{11} \]

and

\[E_t \tilde{R}_{t+1} - R^f = -\frac{\text{cov}_t[u'(\tilde{c}_{t+1}), \tilde{R}_{t+1}]}{E_t'u'(\tilde{c}_{t+1})} \tag{12} \]

where p_t is the price in period t of an asset with random payoff \tilde{x}_{t+1} and gross return \tilde{R}_{t+1} in period $t+1$, β is the subjective discount factor, R^f is the gross return of the risk-free asset, $u'(\cdot)$ is the marginal utility function, c_t is the consumption in period t, and \tilde{c}_{t+1} is the consumption in period $t+1$. $E_t \tilde{R}_{t+1} - R^f$ is the asset’s risk premium.

When the representative agent’s utility function is the power function, $u(c_t) = \frac{c_t^{1-\gamma} - 1}{1-\gamma}$ where γ is the coefficient of relative risk aversion and \tilde{c}_{t+1} and \tilde{x}_{t+1} are conditional lognormally distributed, (12) becomes (Campbell 2003, page 821)

\[E_t \tilde{r}_{t+1} - r^f + \frac{\text{var}_t(\tilde{r}_{t+1})}{2} = \gamma \text{cov}_t(\log \tilde{c}_{t+1}, \tilde{r}_{t+1}) \tag{13} \]
where \(\tilde{r}_{t+1} = \log(1 + \tilde{R}_{t+1}) \) and \(r^f = \log(1 + R^f) \).

The first term on the right-hand side of (11) is the standard discounted present-value formula. This is the asset’s price for a risk-neutral representative agent or for a representative agent when asset payoff and consumption are independent. The second term is a risk aversion adjustment. (11) states that an asset with random future payoff \(\tilde{x}_{t+1} \) is worth less than its expected payoff discounted at the risk-free rate if and only if \(\text{cov} [u'(\tilde{c}_{t+1}), \tilde{x}_{t+1}] \leq 0 \). (12) shows that all assets have an expected return equal to the risk-free rate plus a risk adjustment under risk aversion.

(13) states that the log risk premium is equal to the product of the coefficient of relative risk aversion and the covariance of the log asset return with consumption growth. We now provide a generalization of these results.

Suppose \((\tilde{x}_{t+1}, \tilde{R}_{t+1}, \tilde{c}_{t+1}) \) \(\in \mathbb{R} \times \mathbb{R} \times \mathbb{R} \). From theorem 1 in Cuadras (2002), we know that covariance can always be written as

\[
\text{cov} [u'(\tilde{c}_{t+1}), \tilde{x}_{t+1}] = \int_{\underline{c}}^{\bar{c}} \int_{\underline{x}}^{\bar{x}} [F(c_{t+1}, x_{t+1}) - F_{C_{t+1}}(c_{t+1})F_{X_{t+1}}(x_{t+1})]u''(c_{t+1})dx_{t+1}dc_{t+1}. \quad (14)
\]

Because we can write

\[
\int_{\underline{x}}^{\bar{x}} [F_{X_{t+1}}(x_{t+1}|c_{t+1} \leq c_{t+1}) - F_{X_{t+1}}(x_{t+1})]dx_{t+1} = E\tilde{x}_{t+1} - E(\tilde{x}_{t+1}|c_{t+1} \leq c_{t+1}), \quad (15)
\]

(see, e.g., Tesfatsion (1976), Lemma 1), hence, we have

\[
\text{cov} [u'(\tilde{c}_{t+1}), \tilde{x}_{t+1}] = \int_{\underline{c}}^{\bar{c}} \int_{\underline{x}}^{\bar{x}} [E\tilde{x}_{t+1} - E(\tilde{x}_{t+1}|c_{t+1} \leq c_{t+1})]F_{C_{t+1}}(c_{t+1})u''(c_{t+1})dc_{t+1} \quad \text{(by (15))}.
\]

Using (16), (11) can be rewritten as

\[
p_t = \frac{E_t\tilde{x}_{t+1}}{R^f} - \beta \int_{\underline{c}}^{\bar{c}} FED(\tilde{x}_{t+1}|c_{t+1})F_{C_{t+1}}(c_{t+1}) \left[-\frac{u''(c_{t+1})}{u'(c_{t+1})} \right] dc_{t+1} \quad (17)
\]

discounted present value effect

\[
\text{first-degree expectation dependence effect}
\]

\[
= \frac{E_t\tilde{R}_{t+1}}{R^f} - \beta \int_{\underline{c}}^{\bar{c}} FED(\tilde{R}_{t+1}|c_{t+1})F_{C_{t+1}}(c_{t+1})AR(c_{t+1})MRS_{\tilde{c}_{t+1}, c_{t+1}} dc_{t+1},
\]

where \(AR(x) = -\frac{u''(x)}{u'(x)} \) is the Arrow-Pratt absolute risk aversion coefficient, and \(MRS_{x,y} = \frac{u'(x)}{u'(y)} \) is the marginal rate of substitution between \(x \) and \(y \). We can also rewrite (12) as

\[
E_t\tilde{R}_{t+1} - R^f = \int_{\underline{c}}^{\bar{c}} FED(\tilde{R}_{t+1}|c_{t+1})F_{C_{t+1}}(c_{t+1}) \left[-\frac{u''(c_{t+1})}{E_tu'(c_{t+1})} \right] dc_{t+1} \quad (18)
\]

consumption risk effect

\[
\text{price of risk effect}
\]
Because \(R^f = \frac{1}{\beta} E_t u'(c_t) \) (see e.g. Cochrane 2005, page 11), we also have

\[
E_t \tilde{R}_{t+1} - R^f = \beta R^f \int_{c_t}^{\tilde{c}_{t+1}} FED(\tilde{R}_{t+1}|c_{t+1}) F_{C_{t+1}}(c_{t+1}) MRS_{c_t,c_{t+1}} dc_{t+1}
\]

(19)

(17) shows that an asset’s price involves two terms. The effect, measured by the first term on the right-hand side of (17), is the “discounted present value effect.” This effect depends on the expected return of the asset and the risk-free interest rate. The sign of the discounted present value effect is the same as the sign of the expected return. This term captures the “direct” effect of the discounted expected return, which characterizes the asset’s price for a risk-neutral representative agent.

The second term on the right-hand side of (17) is called “first-degree expectation dependence effect.” This term involves \(\beta \), the expectation dependence between the random payoff and consumption, the Arrow-Pratt risk aversion coefficient and the intertemporal marginal rate of substitution. The sign of the first-degree expectation dependence indicates whether the movements on consumption tend to reinforce (positive first-degree expectation dependence) or to counteract (negative first-degree expectation dependence) the movements on an asset’s payoff.

(18) states that the expected excess return on any risky asset over the risk-free interest rate can be explained as an integral of a number represented by the quantity of consumption risk times the price of this risk. The quantity of consumption risk is measured by the first-degree expectation dependence of the excess stock return with consumption, while the price of risk is the Arrow-Pratt risk aversion coefficient times the intertemporal marginal rate of substitution.

We obtain the following proposition from (17) and (18).

Proposition 3.1 The following statements hold:

(i) \(p_t \leq \frac{E_t \tilde{x}_{t+1}}{R^f} \) for any risk averse representative agent (\(u'' \leq 0 \)) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_1\);

(ii) \(p_t \geq \frac{E_t \tilde{x}_{t+1}}{R^f} \) for any risk averse representative agent (\(u'' \leq 0 \)) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_1\);

(iii) \(E_t \tilde{R}_{t+1} \geq R^f \) for all risk averse representative agent (\(u'' \leq 0 \)) if and only if \((\tilde{R}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_1\);

(iv) \(E_t \tilde{R}_{t+1} \leq R^f \) for all risk averse representative agent (\(u'' \leq 0 \)) if and only if \((\tilde{R}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_1\).

Proof See Appendix A.
Proposition 3.1 states that, for a risk averse representative agent, an asset’s price is lowered (or equity premium is positive) if and only if its payoff is positively first-degree expectation dependent with consumption. Conversely, an asset’s price is raised (or equity premium is negative) if and only if its payoff is negatively first-degree expectation dependent with consumption. Therefore, for a risk averse representative agent, it is the first-degree expectation dependence rather than the covariance that determines its riskiness. Because \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_1(\mathcal{G}_1) \Rightarrow \text{cov}_t(\tilde{x}_{t+1}, \tilde{c}_{t+1}) \geq 0(\leq 0)\) and the converse is not true, we conclude that a positive (negative) covariance is only a necessary condition for risk averse agent paying a lower (higher) asset price (or having a positive (negative) equity premium).

3.2 Comparative risk aversion

The assumption of risk aversion has long been a cornerstone of modern economics and finance. Ross (1981) provides the following strong measure for comparative risk reversion:

Definition 3.2 (Ross 1981) \(u\) is more Ross risk averse than \(v\) if and only if there exists \(\lambda > 0\) such that for all \(x, y\)

\[
\frac{u''(x)}{v''(x)} \geq \lambda \geq \frac{u'(y)}{v'(y)}.
\]

(20)

More risk averse in the sense of Ross guarantees that the more risk averse decision-maker is willing to pay more to benefit from a mean preserving contraction.

Under which condition does a change in the representative agent’s risk preferences reduce the asset price? To answer this question let us consider a change of the utility function from \(u\) to \(v\). From (17) and (18), for agent \(v\), we have

\[
p_t = \frac{E_t \tilde{x}_{t+1}}{R^f} - \beta \int_{\xi}^{\tilde{\xi}} \text{FED}(\tilde{x}_{t+1}|c_{t+1})F_{C_{t+1}}(c_{t+1})[-\frac{v''(c_{t+1})}{v'(c_t)}]dc_{t+1} \tag{21}
\]

and

\[
E_t \tilde{R}_{t+1} - R^f = \int_{\xi}^{\tilde{\xi}} \text{FED}(\tilde{R}_{t+1}|c_{t+1})F_{C_{t+1}}(c_{t+1})[-\frac{v''(c_{t+1})}{E_t v'(c_{t+1})}]dc_{t+1}. \tag{22}
\]

Intuition suggests that if asset return and consumption are positive dependent and agent \(u\) is more risk averse than agent \(v\), agent \(u\) should have a larger risk premium than agent \(v\). This intuition can be reinforced by Ross risk aversion and first-degree expectation dependence, as stated in the following proposition.
Proposition 3.3 Let \(p_u^t \) and \(p_v^t \) denote the asset’s prices corresponding to \(u \) and \(v \) respectively. The following statements hold:

(i) \(p_u^t \geq p_v^t \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_1\) if and only if \(v \) is more Ross risk averse than \(u \);

(ii) \(p_u^t \geq p_v^t \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_1\) if and only if \(u \) is more Ross risk averse than \(v \);

(iii) \(u \) has a larger risk premium than agent \(v \) for all \((\tilde{R}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_1\) if and only if \(u \) is more Ross risk averse than \(v \);

(iv) \(u \) has a larger risk premium than agent \(v \) for all \((\tilde{R}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_1\) if and only if \(v \) is more Ross risk averse than \(u \).

Proof See Appendix A.

Proposition 3.3 indicates that, when an asset’s price first-degree positively (negatively) expectation depends on consumption, an increase in risk aversion in the sense of Ross decreases (increases) the asset price. Proposition 3.3 also shows that, for all risk averse representative agents, assets whose gross returns are positively first-degree expectation dependent with consumption must promise higher expected returns to induce agents to hold them. Conversely, assets that negatively first-degree expectation depend on consumption, such as insurance, can offer expected rates of return that are lower than the risk-free rate, or even negative (net) expected returns.

The results of Proposition 3.3 cannot be obtained with the Arrow-Pratt relative risk aversion measure. We consider the convenient power utility form \(u(c) = \frac{c^{1-\gamma_u} - 1}{1-\gamma_u} \) and \(v(c) = \frac{c^{1-\gamma_v} - 1}{1-\gamma_v} \). \(\gamma_u \) and \(\gamma_v \) are \(u \) and \(v \)’s relative risk aversion coefficients respectively. Intuition would suggest that, when an asset’s gross return and consumption are positively dependent, \(\gamma_u \geq \gamma_v \) implies that \(u \)’s risk premium will be higher. However, the following counter example shows that, in the range of acceptable values of parameters, the Arrow-Pratt relative risk aversion coefficient is neither a necessary nor a sufficient condition to obtain higher risk premium when asset’s gross return and consumption are positively first-degree expectation dependent.

Counter Example Suppose \(u(c) = \frac{c^{1-\gamma_u} - 1}{1-\gamma_u}, \tilde{c}_{t+1} \in [1, 3] \) almost surely and \((\tilde{R}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_1\) (note that in this case \(\text{cov}_t(\tilde{R}_{t+1}, \tilde{c}_{t+1}) \geq 0 \)), from (18) we obtain

\[
E_t \tilde{R}_{t+1} - R^f = \int_2^3 FED(\tilde{R}_{t+1} | c_{t+1})F_{c_{t+1}}(c_{t+1})[\frac{\gamma_{c_{t+1}} - 1}{E_t u'(c_{t+1})}]dc_{t+1}
\]

(23)
hence, when an asset’s gross return and consumption are positively first-degree expectation dependent, \(\frac{d[E_tR_{t+1} - R]}{\gamma dt} \geq 0 \) if and only if \(\frac{\gamma E_t c_{t+1}^{-\gamma - 1}}{E_t c_{t+1}^{-\gamma}} \geq 0 \). We now show that \(\frac{\gamma E_t c_{t+1}^{-\gamma - 1}}{E_t c_{t+1}^{-\gamma}} \) is not always true because it contains the variations of the marginal rate of substitution. Since

\[
\frac{d\gamma c_{t+1}^{-\gamma - 1}}{E_t c_{t+1}^{-\gamma}} = \frac{c_{t+1}^{-\gamma - 1}}{(E_t c_{t+1}^{-\gamma})^2} \left\{ \left[1 - \gamma (\gamma + 1) c_{t+1}^{-\gamma} \right] E_t c_{t+1}^{-\gamma} + \gamma^2 E_t c_{t+1}^{-\gamma - 1} \right\},
\]

we obtain \(\frac{d[E_tR_{t+1} - R]}{\gamma dt} \geq 0 \) if and only if \([1 - \gamma (\gamma + 1) c_{t+1}^{-\gamma}] E_t c_{t+1}^{-\gamma} + \gamma^2 E_t c_{t+1}^{-\gamma - 1} \geq 0 \). Because

\[
[1 - \gamma (\gamma + 1) c_{t+1}^{-\gamma}] E_t c_{t+1}^{-\gamma} + \gamma^2 E_t c_{t+1}^{-\gamma - 1} \leq [1 - \frac{1}{3} \gamma (\gamma + 1)] E_t c_{t+1}^{-\gamma} + \gamma^2 E_t c_{t+1}^{-\gamma - 1} \quad (\text{since } c_{t+1} \leq 3 \text{ almost surely}),
\]

then for \(\gamma = 2 \) and \(\tilde{c}_{t+1} \) such that \(E_t \tilde{c}_{t+1}^{-\gamma} = \frac{1}{5} \) and \(E_t \tilde{c}_{t+1}^{-\gamma - 1} = \frac{1}{21} \), we have

\[
[1 - \frac{1}{3} \gamma (\gamma + 1)] E_t \tilde{c}_{t+1}^{-\gamma} + \gamma^2 E_t \tilde{c}_{t+1}^{-\gamma - 1} = - \frac{1}{5} + \frac{4}{21} < 0.
\]

Therefore, a higher Arrow-Pratt relative risk aversion coefficient is neither a necessary nor a sufficient condition to obtain higher risk premium.

3.3 Changes in joint distributions

The question dual to the change in risk aversion examined above is as follows: Under which condition does a change in the joint distribution of random payoff and consumption increase the asset’s price? We may also ask the same question for the risk premium by using the joint distribution of an asset’s gross return and consumption. To address these questions, let us denote \(E_t^H \) and \(FED_H \) as the expectation and first order expectation dependency under distribution \(H(x, y) \). Let \(p_t^F \) and \(p_t^H \) denote the corresponding prices under distributions \(F(x, y) \) and \(H(x, y) \) respectively. From (17), we have

\[
p_t^H = \frac{E_t^H \tilde{x}_{t+1}}{R^f} - \beta \int_{\mathbb{X}} FED_H(\tilde{x}_{t+1}|c_{t+1}) H_{C_{t+1}}(c_{t+1}) \left[- \frac{u''(c_{t+1})}{u'(c_{t+1})} \right] dc_{t+1}.
\]

Similarly, from (18) we have

\[
E_t^H \tilde{R}_{t+1} - R^f = \int_{\mathbb{X}} FED_H(\tilde{R}_{t+1}|c_{t+1}) H_{C_{t+1}}(c_{t+1}) \left[- \frac{u''(c_{t+1})}{E_t^H u'(c_{t+1})} \right] dc_{t+1}.
\]

From (17), (18), (27) and (28), we obtain the following result.

Proposition 3.4 The following statements hold:

(i) Suppose \(E_t^F \tilde{x}_{t+1} = E_t^H \tilde{x}_{t+1} \), then \(p_t^F \leq p_t^H \) for all risk adverse representative agents if and only if \(F(x, y) \) is more first-degree expectation dependent than \(H(x, y) \);
(ii) For all risk averse representative agents, \(F(x, y) \) is more first-degree expectation dependent than \(H(x, y) \) if and only if the risk premium under \(F(x, y) \) is greater than under \(H(x, y) \).

Proof See Appendix A.

Part (i) of Proposition 3.4 shows that a pure increase in first-degree expectation dependence represents an increase in asset riskiness for all risk averse investors. The next corollary considers a simultaneous variation in expected return.

Corollary 3.5 For all risk averse representative agents, \(E_F \tilde{x}_{t+1} \leq E_H \tilde{x}_{t+1} \) and \(F(x, y) \) is more first-degree expectation dependent than \(H(x, y) \) imply \(p_t^F \leq p_t^H \).

Proof The sufficient conditions are directly obtained from (17) and (27).

Corollary 3.5 states that, for all risk averse representative agents, a decrease in the expected return and the first-degree expectation dependence between return and consumption will decrease the asset’s price. Again, the key available concept for prediction is comparative first-degree expectation dependence.

4 C-CAPM for a higher-order risk averse representative agent

4.1 C-CAPM for a risk averse and prudent representative agent

The concept of prudence and its relationship to precautionary savings was introduced by Kimball (1990). Since then, prudence has become a common and accepted assumption in the economics literature (Gollier 2001). All prudent agents dislike any increase in downside risk in the sense of Menezes et al. (1980) (See also Chiu, 2005.). Deck and Schlesinger (2010) provide a laboratory experiment to determine whether preferences are prudent and show behavioural evidence for prudence. In this section, we will demonstrate that we can get weaker dependence conditions for asset price and equity premium than first-degree expectation dependence, when the representative agent is risk averse and prudent.

We can integrate the right-hand term of (16) by parts and obtain:

\[
\text{cov}_t [u'(c_{t+1}), \tilde{x}_{t+1}] = \int_{-\infty}^{\infty} \text{FED}(\tilde{x}_{t+1}|c_{t+1})u''(c_{t+1})F_{C_{t+1}}(c_{t+1})dc_{t+1} \\
= \int_{-\infty}^{\infty} u''(c_{t+1})d\left(\int_{c_{t+1}}^{\infty} [E\tilde{x}_{t+1} - E(\tilde{x}_{t+1}|\tilde{c}_{t+1} \leq s)]F_{C_{t+1}}(s)ds \right)
\]
\[u''(c_{t+1}) \int_{\xi}^{\tau} [E\tilde{x}_{t+1} - E(\tilde{x}_{t+1}|\tilde{c}_{t+1} \leq s)] F_{C_{t+1}}(s) ds \]
\[- \int_{\xi}^{\tau} \int_{\xi}^{\tau} E\tilde{x}_{t+1} - E(\tilde{x}_{t+1}|\tilde{c}_{t+1} \leq s)] F_{C_{t+1}}(s) ds u'''(c_{t+1}) dc_{t+1} \]
\[u''(\tau) \int_{\xi}^{\tau} [E\tilde{x}_{t+1} - E(\tilde{x}_{t+1}|\tilde{c}_{t+1} \leq s)] F_{C_{t+1}}(s) ds \]
\[- \int_{\xi}^{\tau} \int_{\xi}^{\tau} E\tilde{x}_{t+1} - E(\tilde{x}_{t+1}|\tilde{c}_{t+1} \leq s)] F_{C_{t+1}}(s) ds u'''(c_{t+1}) dc_{t+1} \]
\[u''(\tau) cov_{t}(\tilde{x}_{t+1}, \tilde{c}_{t+1}) - \int_{\xi}^{\tau} SED(\tilde{x}_{t+1}|c_{t+1}) u'''(c_{t+1}) dc_{t+1}. \]

From equation (5), we know that a positive SED implies a positive cov(\tilde{x}_{t+1}, \tilde{c}_{t+1}) but the converse is not true. Hence, we have from (29) that cov_{t}(u'(\tilde{c}_{t+1}), \tilde{x}_{t+1}) \leq 0 for all u'' \leq 0 and u''' \geq 0. With a positive SED function, prudence is also necessary.

(11) and (12) can be rewritten as:
\[p_{t} = \frac{E_{t}\tilde{x}_{t+1}}{R_{t}} - \beta cov_{t}(\tilde{x}_{t+1}, \tilde{c}_{t+1}) \left[-\frac{u''(\tau)}{u'(c_{t})} \right] \]
\[\text{(30)}\]
\[- \beta \int_{\xi}^{\tau} SED(\tilde{x}_{t+1}|c_{t+1}) \left[\frac{u'''(c_{t+1})}{u'(c_{t})} \right] dc_{t+1} \]
\[\text{discounted present value effect} \quad \text{covariance effect} \]
\[- \beta \int_{\xi}^{\tau} SED(\tilde{x}_{t+1}|c_{t+1}) \left[\frac{u'''(c_{t+1})}{u'(c_{t})} \right] dc_{t+1} \]
\[\text{second–degree expectation dependence effect} \]

or
\[p_{t} = \frac{E_{t}\tilde{x}_{t+1}}{R_{t}} - \beta cov_{t}(\tilde{x}_{t+1}, \tilde{c}_{t+1}) \frac{AP(\tilde{c}_{t+1}) MRS_{C_{t+1}}}{ct_{t+1}} \]
\[\quad - \beta \int_{\xi}^{\tau} SED(\tilde{x}_{t+1}|c_{t+1}) \frac{AP(\tilde{c}_{t+1}) MRS_{C_{t+1},ct_{t+1}}}{dc_{t+1}} \]
\[\text{31}\]

where \(AP(x) = \frac{u'''(x)}{u'(x)} \) is the index of absolute prudence\(^4\), and
\[E_{t}\tilde{R}_{t+1} - R_{t} \]
\[= \frac{cov_{t}(\tilde{R}_{t+1}, \tilde{c}_{t+1})}{E_{t}u'(\tilde{c}_{t+1})} + \int_{\xi}^{\tau} SED(\tilde{R}_{t+1}|c_{t+1}) \frac{u'''(c_{t+1})}{E_{t}u'(\tilde{c}_{t+1})} dc_{t+1} \]
\[\text{consumption covariance effect} \quad \text{consumption second–degree expectation dependence effect} \]
\[\text{(32)}\]

or
\[E_{t}\tilde{R}_{t+1} - R_{t} \]
\[= \beta R_{t}^j cov_{t}(\tilde{R}_{t+1}, \tilde{c}_{t+1}) \frac{AR(\tilde{c}) MRS_{C_{t+1},c_{t+1}}}{ct_{t+1}} \quad + \quad \beta R_{t}^j \int_{\xi}^{\tau} SED(\tilde{R}_{t+1}|c_{t+1}) \frac{AP(\tilde{c}_{t+1}) MRS_{C_{t+1},c_{t+1}}}{dc_{t+1}} \]
\[\text{33}\]

\(^4\)Modica and Scarsini (2005), Crainich and Eckhoudt (2008) and Demuij and Eckhoudt (2010) propose \(\frac{u''''(x)}{u''(x)} \) instead of \(-\frac{u''''(x)}{u''(x)} \) (Kimball, 1990) as an alternative candidate to evaluate the intensity of prudence.
Condition (31) includes three terms. The first one is the same as in condition (17). The second term on the right-hand side of (31) is called the “covariance effect.” This term involves β, the covariance of asset return and consumption, the Arrow-Pratt risk aversion coefficient and the marginal rates of substitution. The third term on the right-hand side of (31) is called “second-degree expectation dependence effect,” which reflects the way in which second-degree expectation dependence of risk affects asset’s price through the intensity of downside risk aversion. Again (31) affirms that positive correlation is only a necessary condition for all risk averse and prudent agents to pay a lower price. Equation (32) shows that a positive SED reinforces the positive covariance effect to obtain a positive risk premium.

We state the following propositions without proof (The proofs of these propositions are similar to the proofs of Propositions in Section 3, and are therefore skipped. They are however available from the authors.).

Proposition 4.1 The following statements hold:

(i) \(p_t \leq \frac{E_t \tilde{x}_{t+1}}{R_f} \) for any risk averse and prudent representative agent \((u'' \leq 0 \text{ and } u''' \geq 0)\) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in F_2;\)

(ii) \(p_t \geq \frac{E_t \tilde{x}_{t+1}}{R_f} \) for any risk averse and prudent representative agent \((u'' \leq 0 \text{ and } u''' \geq 0)\) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in G_2;\)

(iii) \(E_t \tilde{R}_{t+1} \geq R_f \) for all risk averse and prudent representative agents \((u'' \leq 0 \text{ and } u''' \geq 0)\) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in F_2;\)

(iv) \(E_t \tilde{R}_{t+1} \leq R_f \) for all risk averse and prudent representative agents \((u'' \leq 0 \text{ and } u''' \geq 0)\) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in G_2.\)

Definition 4.2 (Modica and Scarsini 2005) \(u \) is more downside risk averse than \(v \) if and only if there exists \(\lambda > 0 \) such that for all \(x, y \)

\[
\frac{u'''(x)}{u''(x)} \geq \lambda \geq \frac{v'''(y)}{v''(y)}.
\] (34)

More downside risk aversion can guarantee that the decision-maker with a utility function that has more downside risk aversion is willing to pay more to avoid the downside risk increase as defined by Menezes et al. (1980). We can therefore extend Proposition 3.3 as follows:
Proposition 4.3 The following statements hold:

(i) \(p_u^t \geq p_v^t \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_2 \) if and only if \(v \) is more Ross and downside risk averse than \(u \);

(ii) \(p_u^t \geq p_v^t \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_2 \) if and only if \(u \) is more Ross and downside risk averse than \(v \);

(iii) \(u \) has a larger risk premium than agent \(v \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_2 \) if and only if \(u \) is more Ross and downside risk averse than \(v \);

(iv) \(u \) has a larger risk premium than agent \(v \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_2 \) if and only if \(v \) is more Ross and downside risk averse than \(u \).

We also obtain the following results for changes in joint distributions.

Proposition 4.4 The following statements hold:

(i) Suppose \(E^F_{t} \tilde{x}_{t+1} = E^H_{t} \tilde{x}_{t+1} \), then \(p_F^t \leq p_H^t \) for all risk averse and prudent representative agents if and only if \(F(x, y) \) is more second-degree expectation dependent than \(H(x, y) \);

(ii) For all risk averse and prudent representative agents, \(F(x, y) \) is more second-degree expectation dependent than \(H(x, y) \) if and only if the risk premium under \(F(x, y) \) is greater than under \(H(x, y) \).

Corollary 4.5 For all risk averse and prudent representative agents, \(E^F_{t} \tilde{x}_{t+1} \leq E^H_{t} \tilde{x}_{t+1} \) and \(F(x, y) \) is more second-degree expectation dependent than \(H(x, y) \) implies \(p_F^t \leq p_H^t \);

4.2 C-CAPM for a higher-order representative agent

Ekern (1980) provides the following definition to sign the higher-order risk attitude.

Definition 4.6 (Ekern 1980) An agent \(u \) is \(N \)th degree risk averse, if and only if

\[
(-1)^N u^{(N)}(x) \leq 0 \quad \text{for all} \quad x, \tag{35}
\]

where \(u^{(N)}(\cdot) \) denotes the \(N \)th derivative of \(u(x) \).

Ekern (1980) shows that all agents having utility function with \(N \)th degree risk aversion dislike a probability change if and only if it produces an increase in \(N \)th degree risk. Risk aversion in the traditional sense of a concave utility function is indicated by \(N = 2 \). When \(N = 3 \), we obtain \(u''' \geq 0 \) which means that marginal utility is convex, or implies prudence. Eeckhoudt and
Schlesinger (2006) derive a class of lottery pairs to show that lottery preferences are compatible with Ekern’s \(N^{th}\) degree risk aversion.

Jindapon and Neilson (2007) generalize Ross’ risk aversion to higher-order risk aversion.

Definition 4.7 (*Jindapon and Neilson 2007*) \(u\) is more \(N^{th}\)-degree Ross risk averse than \(v\) if and only if there exists \(\lambda > 0\) such that for all \(x, y\)

\[
\frac{u(N)(x)}{v(N)(x)} \geq \lambda \geq \frac{u'(y)}{v'(y)}.
\]

(36)

Li (2009) and Denuit and Eeckhoudt (2010) provide context-free explanations for higher-order Ross risk aversion. In Appendix B, we generalize the results of section 3 and 4.1 to higher-degree risks and higher order representative agents.

5 Asset prices and two local absolute indexes of risk attitude

If we assume that \(\tilde{c}_t\) and \(\tilde{c}_{t+1}\) are close enough, then we can use the local coefficient of risk aversion and local downside risk aversion (see Modica and Scarsini, 2005)\(^5\) to obtain the following first-order approximation formulas for (17) and (30):

\[
p_t \approx \frac{E_t \tilde{x}_{t+1}}{R^f} + \beta \frac{u''(c_t)}{u'(c_t)} \int_E FED(\tilde{x}_{t+1}|c_{t+1}) F_{C_{t+1}}(c_{t+1}) dc_{t+1}
\]

\[
= \frac{E_t \tilde{x}_{t+1}}{R^f} - \beta AR(c_t) cov_t(\tilde{x}_{t+1}, c_{t+1})
\]

and

\[
p_t \approx \frac{E_t \tilde{x}_{t+1}}{R^f} + \beta \frac{u''(c_t)}{u'(c_t)} cov_t(\tilde{x}_{t+1}, \tilde{c}_{t+1}) - \beta \frac{u''(c_t)}{u'(c_t)} \int_E SED(\tilde{x}_{t+1}|c_{t+1}) dc_{t+1}
\]

\[
= \frac{E_t \tilde{x}_{t+1}}{R^f} - \beta AR(c_t) cov_t(\tilde{x}_{t+1}, \tilde{c}_{t+1}) - \beta AP(c_t) \int_E SED(\tilde{x}_{t+1}|c_{t+1}) dc_{t+1}.
\]

When the variation of consumption is small, (37) implies that absolute risk aversion and covariance determine asset prices while (38) implies that absolute risk aversion, absolute prudence, covariance and \(SED\) determine asset prices. We mentioned before that \(SED(\tilde{x}|y)\) is related to 2nd central cross lower partial moment of \(\tilde{x}\) and \(\tilde{y}\), hence (38) provides a theoretical explanation of the importance of higher-order risk preferences, higher-order moments and comoments in

\(^5\)See Denuit and Eeckhoudt (2010) for higher order risk attitudes.
We must emphasize that we obtain only approximations of asset prices when we use Arrow-Pratt measures of risk aversion and prudence.

6 Concluding remarks on the equity premium puzzle

We discuss the implications of our results on the equity premium puzzle. The major discrepancy between the C-CAPM model predictions and empirical reality is identified as the equity premium puzzle in the literature. As mentioned in Section 3, the key empirical observations of the equity premium puzzle based on (13) can be summarized as follows:

When the representative agent’s utility function is the power function, and \tilde{c}_{t+1} and \tilde{x}_{t+1} are conditional lognormally distributed, observed equity premium can be explained only by assuming a very high coefficient of relative risk aversion. In other words, it is difficult to explain the existence of observed high risk premia with the covariance because of the smoothness of consumption over time. However, the equity premium puzzle conclusion is built on specific utility functions and return distributions. Our results show that, for general utility functions and distributions, covariance is not the key element of equity premium prediction. It is very easy to find counter intuitive results. For example, given positively correlated gross return and consumption distributions, a lower Arrow-Pratt coefficient of relative risk aversion may result in higher equity premium. Alternatively, given representative agent’s preference, a lower covariance between gross return and consumption may result in a higher equity premium. Therefore, (13) is not a robust theoretical prediction of equity premia.

Our results prove that asset pricing and equity premium settings and their comparative statics imply the following robust predictions:

(a) it is expectation dependence between gross return and consumption that determines asset riskiness rather than covariance;

(b) when gross return and consumption are positive expectation dependent, higher risk aversion in the sense of Ross is equivalent to a higher equity premium;

(c) when a representative agent’s risk preference satisfies higher-order risk aversion, more expectation dependence between gross return and consumption is equivalent to higher equity

\footnotetext[6]{For the empirical studies of higher-order risk preferences, higher-order moments and comoments in finance, we refer to Harvey and Siddique (2000); Dittmar (2002); Mitton and Vorkink (2007) and Martellini and Ziemann (2010)}
premium.

Because the comparative Ross risk aversion is fairly restrictive upon preference, some readers may regard (b) as negative, because no standard utility functions satisfy such condition on the whole domain. However, there are utility functions satisfying comparative Ross risk aversion on some domain. For example, Crainich and Eeckhoudt (2008) and Denuit and Eeckhoudt (2010) assert that \((-1)^{N+1} \frac{u(N)}{u'}\) is an appropriate local index of \(N^{th}\) order risk attitude. On the other hand, some readers may think that the fact that no standard utility functions satisfy these conditions would underscore the need to develop experimental methods to identify these conditions. Ross (1981), Modica and Scarsini (2005), Li (2009) and Denuit and Eeckhoudt (2010) provide context-free experiments for comparative Ross risk aversion. More research is needed in both directions to develop the theoretical foundations for C-CAPM. This paper takes a first step in that direction. We have proposed a new unified interpretation to C-CAPM, which we have related to the equity premium puzzle problem. Our results are important because C-CAPM shares the positive versus normative tensions that are present in finance and economics to explain asset prices and equity premia.

7 Appendix A: Proofs of propositions

7.1 Proof of Proposition 3.1

(i): The sufficient conditions are directly obtained from (17) and (18). We prove the necessity by a contradiction. Suppose that \(FED(\bar{x}_{t+1}|c_{t+1}) < 0\) for \(c_{t+1}^0\). Because of the continuity of \(FED(\bar{x}|y)\), we have \(FED(\bar{x}_{t+1}|c_{t+1}^0) < 0\) in interval \([a,b]\). Choose the following utility function:

\[
\bar{u}(x) = \begin{cases}
 \alpha x - e^{-a} & x < a \\
 \alpha x - e^{-x} & a \leq x \leq b \\
 \alpha x - e^{-b} & x > b,
\end{cases}
\] \(39\)

where \(\alpha > 0\). Then

\[
\bar{u}'(x) = \begin{cases}
 \alpha & x < a \\
 \alpha + e^{-x} & a \leq x \leq b \\
 \alpha & x > b
\end{cases}
\] \(40\)
and
\[u''(x) = \begin{cases}
0 & x < a \\
-e^{-x} & a \leq x \leq b \\
0 & x > b.
\end{cases} \] (41)

Therefore,
\[p_t = \frac{E_t \tilde{x}_{t+1}}{R^f} - \beta \frac{1}{u'(c_t)} \int_a^b FED(\tilde{x}_{t+1}|c_{t+1})F_{C_t+1}(c_{t+1})e^{-c_{t+1}}dc_{t+1} > \frac{E_t \tilde{x}_{t+1}}{R^f}. \] (42)

This is a contradiction.

(ii) (iii) and (iv): We can prove them by the same approach used in (i).

7.2 Proof of Proposition 3.3

(i): The sufficient conditions are directly obtained from (17), (18), (21) and (22). We prove the necessity by a contradiction. Suppose that there exists some \(c_{t+1}\) and \(c_t\) such that \(\frac{u''(c_{t+1})}{v''(c_{t+1})} > \frac{u'(c_t)}{v'(c_t)}\). Because \(u', v', u''\) and \(v''\) are continuous, we have
\[\frac{u''(c_{t+1})}{v''(c_{t+1})} > \frac{u'(c_t)}{v'(c_t)} \text{ for all } (c_{t+1}, c_t) \in [\gamma_1, \gamma_2], \] (43)

hence
\[\frac{-u''(c_{t+1})}{-v''(c_{t+1})} > \frac{u'(c_t)}{v'(c_t)} \text{ for all } (c_{t+1}, c_t) \in [\gamma_1, \gamma_2], \] (44)

and
\[\frac{u''(c_{t+1})}{u'(c_t)} > \frac{v''(c_{t+1})}{v'(c_t)} \text{ for all } (c_{t+1}, c_t) \in [\gamma_1, \gamma_2]. \] (45)

If \(F(x, y)\) is a distribution function such that \(FED(\tilde{x}_{t+1}|c_{t+1})F_Y(y)\) is strictly positive on interval \([\gamma_1, \gamma_2]\) and is equal to zero on other intervals, then we have
\[p_t'' - p_t'' = \beta \int_{\gamma_1}^{\gamma_2} FED(\tilde{x}_{t+1}|c_{t+1})F_Y(y)\left[\frac{u''(c_{t+1})}{u'(c_t)} - \frac{v''(c_{t+1})}{v'(c_t)}\right] < 0. \] (46)

This is a contradiction.

(ii) (iii) and (iv): We can prove them by the same approach used in (i).

7.3 Proof of Proposition 3.4

(i): The sufficient conditions are directly obtained from (17), (18), (27) and (28). We prove the necessity by a contradiction. Suppose \(FED_F(\tilde{x}_{t+1}|c_{t+1})F_{C_t+1}(c_{t+1}) < FED_H(\tilde{x}_{t+1}|c_{t+1})H_{C_t+1}(c_{t+1})\) for \(c_{t+1}^0\). Owing the continuity of \(FED_F(\tilde{x}_{t+1}|c_{t+1})F_{C_t+1}(c_{t+1}) - FED_H(\tilde{x}_{t+1}|c_{t+1})H_{C_t+1}(c_{t+1}), \)
we have $FED_F(\tilde{x}_{t+1}|c^0_{t+1})F_{C_{t+1}}(c^0_{t+1}) < FED_H(\tilde{x}_{t+1}|c^0_{t+1})H_{C_{t+1}}(c^0_{t+1})$ in interval $[a,b]$. Choose the following utility function:

$$
\bar{u}(x) = \begin{cases}
\alpha x - e^{-a} & x < a \\
\alpha x - e^{-x} & a \leq x \leq b \\
\alpha x - e^{-b} & x > b,
\end{cases}
$$

where $\alpha > 0$. Then

$$
\bar{u}'(x) = \begin{cases}
\alpha & x < a \\
\alpha + e^{-x} & a \leq x \leq b \\
\alpha & x > b,
\end{cases}
$$

and

$$
\bar{u}''(x) = \begin{cases}
0 & x < a \\
-e^{-x} & a \leq x \leq b \\
0 & x > b.
\end{cases}
$$

Therefore,

$$
p_t^F - p_t^H = \beta \frac{1}{u'(c_t)} \int_a^b [FED_H(\tilde{x}_{t+1}|c_{t+1})F_{C_{t+1}}(c_{t+1}) - FED_F(\tilde{x}_{t+1}|y)F_{C_{t+1}}(c_{t+1})]e^{-ct+1}dc_{t+1} > 0.
$$

(ii): We can prove the second part of the proposition by the same approach used in (i).

8 Appendix B: Higher-order risks and higher order representative agents

We integrate the right-hand term of (16) by parts repeatedly until we obtain:

$$
cov[u'(\tilde{c}_{t+1}), \tilde{x}_{t+1}] = \sum_{k=2}^{N} (-1)^k u^{(k)}(c)k^{th}ED(\tilde{x}_{t+1}|c) + \int_{\xi}(-1)^{N+1}u^{(N+1)}(c_{t+1})N^{th}ED(\tilde{x}_{t+1}|c_{t+1})dc_{t+1}, \text{ for } n \geq 2.
$$

Then (11) and (12) can be rewritten as:

$$
p_t = \frac{E_t\tilde{x}_{t+1}}{R_{t+1}} - \beta \sum_{k=2}^{N} k^{th}ED(\tilde{x}_{t+1}|c)[(-1)^k \frac{u^{(k)}(c)}{u'(c_t)}] \text{ discounted present value effect}
$$

$$
- \beta \sum_{k=2}^{N} k^{th}ED(\tilde{x}_{t+1}|c)[(-1)^k \frac{u^{(k)}(c)}{u'(c_t)}] \text{ higher-order cross moments effect}
$$
\[
- \beta \int_{\mathcal{E}} N^{th} ED(\tilde{x}_{t+1}|c_{t+1}) \left[(-1)^{N+2} \frac{u^{(N+1)}(c_{t+1})}{u'(c_t)} \right] dc_{t+1}
\]

\[
= \frac{E_t \tilde{x}_{t+1}}{R^f} - \beta \sum_{k=2}^{N} k^{th} ED(\tilde{x}_{t+1}|\tau) AR^{(k)}(\tau) MRS_{\tau,c_t}
\]

\[
- \beta \int_{\mathcal{E}} N^{th} ED(\tilde{x}_{t+1}|c_{t+1}) AR^{(k+1)}(c_{t+1}) MRS_{c_{t+1},c_t} dc_{t+1}
\]

where \(AR^{(k)}(x) = (-1)^{k+1} \frac{u^{(k)}(x)}{u'(x)} \) is the absolute index of \(k^{th} \) order risk aversion, and

\[
E_t \tilde{R}_{t+1} - R^f = \sum_{k=2}^{N} k^{th} ED(\tilde{R}_{t+1}|\tau) \left[(-1)^{k+1} \frac{u^{(k)}(\tau)}{E_t u'(\tilde{c}_{t+1})} \right] dc_{t+1}
\]

\[
+ \int_{\mathcal{E}} N^{th} ED(\tilde{R}_{t+1}|c_{t+1}) \left[(-1)^{N+2} \frac{u^{(N+1)}(c_{t+1})}{E_t u'(\tilde{c}_{t+1})} \right] dc_{t+1}
\]

\[
= \beta R^f \sum_{k=2}^{N} k^{th} ED(\tilde{R}_{t+1}|\tau) AR^{(k)}(\tau) MRS_{\tau,c_t}
\]

\[
+ \beta R^f \int_{\mathcal{E}} N^{th} ED(\tilde{R}_{t+1}|c_{t+1}) AR^{(k+1)}(c_{t+1}) MRS_{c_{t+1},c_t} dc_{t+1}.
\]

Condition (52) includes three terms. The first one is the same as in condition (17). The second term on the right-hand side of (52) is called “higher-order cross moments effect.” This term involves \(\beta \), the intensity of higher-order risk aversion, the marginal rates of substitution and the higher-order cross moments of asset return and consumption. The third term on the right-hand side of (52) is called “\(N^{th} \) degree expectation dependence effect,” which reflects the way in which \(N^{th} \)-degree expectation dependence of risks affect asset price through the intensity of absolute \(N^{th} \) risk aversion and the marginal rates of substitution.

We state the following propositions without proof (The proofs of these propositions are similar to the proofs of Propositions in Section 3, and are therefore skipped. They are however available from the authors.).

Proposition 8.1 The following statements hold:

(i) \(p_t \leq \frac{E_t \tilde{x}_{t+1}}{R^f} \) for any \(i^{th} \) risk averse representative agent with \(i = 2, \ldots, N + 1 \) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_N \);

(ii) \(p_t \geq \frac{E_t \tilde{x}_{t+1}}{R^f} \) for any \(i^{th} \) risk averse representative agent with \(i = 2, \ldots, N + 1 \) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_N \);
(iii) \(E_t \tilde{R}_{t+1} \geq R_t \) for all \(i \)th risk averse representative agents with \(i = 2, \ldots, N + 1 \) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_N \);

(iv) \(E_t \tilde{R}_{t+1} \leq R_t \) for all \(i \)th risk averse representative agents with \(i = 2, \ldots, N + 1 \) if and only if \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_N \).

Proposition 8.1 suggests that, for a \(i \)th-degree risk averse representative agent with \(i = 1, \ldots, n \), an asset’s price is lowered if and only if its payoff \(N \)th-order positively expectation depends on consumption. Conversely, an asset’s price is raised if and only if it \(N \)th-order negatively expectation depends on consumption. Therefore, for \(i \)th-degree representative agents with \(i = 1, \ldots, N + 1 \), it is the \(N \)th-order expectation dependence that determines its riskiness. The next two propositions and Corollary 8.4 have a similar general intuition when compared with those in Section 3.

Proposition 8.2 The following statements hold:

(i) \(p^u_t \geq p^v_t \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_N \) if and only if \(v \) is more \(i \)th risk averse than \(u \) for \(i = 2, \ldots, N + 1 \);

(ii) \(p^u_t \geq p^v_t \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_N \) if and only if \(u \) is more \(i \)th risk averse than \(v \) for \(i = 2, \ldots, N + 1 \);

(iii) \(u \) has a larger risk premium than agent \(v \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{F}_N \) if and only if \(u \) is more Ross \(i \)th risk averse than \(v \) for \(i = 2, \ldots, N + 1 \);

(iv) \(u \) has a larger risk premium than agent \(v \) for all \((\tilde{x}_{t+1}, \tilde{c}_{t+1}) \in \mathcal{G}_N \) if and only if \(v \) is Ross \(i \)th risk averse than \(v \) for \(i = 2, \ldots, N + 1 \).

Proposition 8.3 The following statements hold:

(i) Suppose \(E_t^F \tilde{x}_{t+1} = E_t^H \tilde{x}_{t+1} \), then \(p^F_t \leq p^H_t \) for all \(i \)th risk averse representative agents with \(i = 2, \ldots, N + 1 \) if and only if \(F(x, y) \) is \(N \)th more expectation dependent than \(H(x, y) \);

(ii) For all \(i \)th risk averse representative agents with \(i = 2, \ldots, N + 1 \), \(F(x, y) \) is more \(i \)th-degree expectation dependent than \(H(x, y) \) if and only if the risk premium under \(F(x, y) \) is greater than \(H(x, y) \).

Corollary 8.4 For all \(i \)th risk averse representative agents with \(i = 2, \ldots, N + 1 \), \(E_t^F \tilde{x}_{t+1} \leq E_t^H \tilde{x}_{t+1} \) and \(F(x, y) \) is more \(N \)th expectation dependent than \(H(x, y) \) implies \(p^F_t \leq p^H_t \);
9 References

Kimball M. S., (1990), Precautionary saving in the small and in the large, Econometrica 58, 53-73.

Martellini L., Ziemann V., (2010), Improved estimates of higher-order comoments

Ross S. A., (1981), Some stronger measures of risk aversion in the small and in the large with applications, Econometrica 49, 621-663.

