
DRAFT

Modeling Stochastic Mortality for Joint Lives

through Subordinators

Authors

ABSTRACT

Mortality model for joint lives is critical to institutions which offer joint and last survivor financial

products. In this paper, we propose a new model in which we use the time-changed Brownian

motion with dependent subordinators to describe the mortality of joint lives. We then employ

this model to estimate the mortality rate of joint lives in a well-known Canadian insurance

dataset, and a dataset collected from National Health Interview Survey (NHIS). Specifically,

we first depict an individual’s death time as the stopping time when the value of the hazard

rate process first reaches one, and then introduce the dependence through dependent

subordinators. Compared with existing mortality models, our model better interprets the

correlation of death between joint lives, and allows more flexibility of the evolution of the hazard

rate process. Empirical results show that our model yields highly accurate estimations of

mortality, compared to the baseline non-parametric (Dabrowska) estimation, and the most

widely used Copula model. Besides, our model also has high accuracy when modeling the

joint mortality for couples in advanced old age.

JEL code: C6, C1, I1, J1

Keywords: Mortality rate; Joint lives; Survival; Stochastic process; Subordinator

1 Introduction

In practice in the current life contingencies markets, most issuers assume independence of mor-

tality rates when pricing and issuing multiple life contingent products such as Joint and Survivor

Annuities. This, however, neglects the possible dependency between joint lives, although there is
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evidence of, for example, dependence in the life trajectory of married couples. Indeed, several

empirical studies suggest that the survival times of joint couples are not independent events.

Some earlier findings on dependence of joint lives include Jagger and Sutton (1991), which show

that an individual’s risk of mortality increases after the partner dies. This phenomenon is even

more significant when the husband dies first. Additionally, Houggard et al. (1992) study the

longevity impact of the death of one partner in a relationship by analyzing the joint survival of

Danish twins.1 Assuming independence of lifetimes may cause inaccurate pricing and introduce

moral hazard when selling joint life products to interrelated individuals.

We study a joint life mortality model in this paper without imposing the assumption of indepen-

dence of survival times of the individuals. Previous work in parametrically modeling dependent

joint life distributions includes Brockett (1984) who uses a functional equation method to find the

totality permissible classes of bivariate Gompertz distributions, and then introduces additional

dependence in the risk of simultaneous accidental death through the Marshal Olkin bivariate ex-

ponential distribution so as to obtain a general dependent bivariate Makeham distribution. These

bivariate joint life models have Gompertz (or Makeham) marginal distributions for the individual

lives’ survival distributions while accommodating dependence in their joint distribution. The

Gompertz and Makeham distributions fit the univariate (marginal) mortality of humans very well

until age 100, as discussed by Gavrilov and Gavrilova (2011).

An alternative empirical approach to model dependence in joint life mortality is to start with

marginal distributions, and then introduce dependence using a copula model for the bivariate

mortality structure. Articles using this approach include Frees et al. (1996) who use a Frank

copula function to model the dependence between the survival times of couples. Carriere (2000)

argues that a mixed frailty copula model and generalized Frank copula can describe joint lives

well. Spreeuw (2006) derives the conditional law of mortality of a person given the partner’s

mortality status by using a copula model. Luciano et al. (2008) also describe the dependency

through an Archimedean copula.

1Besides the above earlier studies, there are some other related papers that find the same conclusion. For example,
Frees et al. (1996) prove and model the joint survival through a copula model using a large Canadian insurance
company data set. Manor and Eisenbach (2003) examine the effect of spousal death on mortality and how this
effect is driven by the duration of bereavement and other demographic factors such as age, sex, education, and
household size. Seifter et al. (2014) investigate the impact of bereavement and the mortality of the surviving
spouse among Amish couples.
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In this paper, we introduce a novel stochastic mortality model to describe the dependency of

joint lives. We model the hazard rate process (also known as the force of mortality rate or the

failure rate process) of an individual by utilizing a time changed Brownian motion, and introduce

the dependence into the joint life process through the use of dependent subordinator processes.

This results in a stochastic mortality rate process exhibiting dependence between lives.

The assumption of a stochastic mortality process has been widely used for modeling human

mortality. For example, Lorenzo et al. (2006) consider stochastic volatility in the force of

mortality (hazard rate) process, where the mortality rate is modeled by a Cox Ingersoll Ross

(CIR) stochastic process. Luciano et al. (2008) model the marginal stochastic mortality via a

Cox process which allows “jumps” in the arrival of death.

Besides the widely used copula model in modeling dependence between stochastic processes (e.g.

Luciano et al., 2008), another good method of introducing dependence into correlated stochastic

processes is through the use of what is known as subordinator (also stochastic processes). For

example, Semeraro (2006) introduces a multivariate subordinator having gamma marginals,

and Luciano and Semeraro (2010) build a theoretical framework for multivariate subordination

of Brownian motions. In our paper, we construct the subordinators as a combination of an

idiosyncratic component and a common one. The idiosyncratic subordinators express the

individual component of an individual’s mortality within a couple’s joint mortality structure,

while the common subordinator expresses the lifestyle connecting dependence between the

mortality rate processes of the couple (e.g., eating similar foods, having similar exercise patterns,

living in similar environments, driving in automobiles together, etc.). We propose a stochastic

mortality model which involves a subordinator in the hazard rate process, and we model the

death time as a stopping time of this process.

As mentioned previously, the subordinator of each individual’s hazard rate process contains

both a common process that is shared with his/her partner, as well as an unique one which is

determined by his/her age, gender, genome, etc. This formulation respects the fact that the

evolution of the probability of death is determined both separately and connectedly with the

partner, because people living together share similar external factors. For example, Nielsen

et al. (2018) prove that an individual who lives together with a spouse that has diabetes also
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experiences a higher risk of having it, even after adjusting for obesity. Besides, because there is

a tradeoff of internal and external factors in determining mortality propensity, we also include a

weighting parameter that determines how much the exhibited individual mortality relies on these

internal and external processes, and we allow this weight to change over time. These can be seen

as the change of the level of impact coming from marriage. For example, Johnson et al. (2000)

prove that, by getting married, people in younger age group reduce more risk of death than their

counterparts in older age group. Therefore, our model not only models the dependence between

joint lives, but also allows this dependence to change with time.

Compared with statistical copula models and nonparametric models, our model has three major

strengths. First, as mentioned in Frees et al. (1996), copula models focus on modeling and

measuring the effects of dependence, but do not attempt to describe the mechanism behind joint

mortality. Our model, however, provides a more straightforward way to interpret how joint

lives impact each other. Second, we model how the dependence evolves as people age. We

model the fact that, as people age, their internal characteristics could play a more important

role in determining their probability of death, compared to when they are in younger ages.

This coincides with previous observations and analyses (e.g., Austad, 2006). We find that this

phenomenon is more significant among males. Specifically, as the male ages, his probability of

death becomes less dependent on external factors, while this trend is not similarly significant

among females. Third, our model does not constrain the hazard process to be an increasing

function, and allows it to fluctuate within certain ranges. This feature reflects the reality that the

evolution of individuals’ probability of death can be impacted by various life events, and can

both speed up and slow down after negative or positive shocks related to changes of lifestyles,

habits, or life events (job loss or promotion; illness; recovery from severe diseases; etc.).

The rest of this paper is organized as follows. Section 2 introduces the detailed setting of our

model and its basic properties. Section 3 describes the dataset in our empirical analysis. In

Section 4 and 5, we apply our model to datasets and test its performance. We conclude our

findings and discuss further research in Section 6.
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2 Modeling Dependent Mortality through Time Change Brownian

Motions with Dependent Subordinators

2.1 Modeling Individual Death Time through Time Change Brownian Motion

Assume a complete probability space (Ω,F ,P) which supports two independent stochastic

processes Bt and Gt . Here, Bt is assumed to be a standard Brownian motion, and Gt is assumed

to start from zero and be an increasing Càdlàg process (i.e., has sample paths that are right

continuous with left limits). Construct a Brownian motion with drift Xt = X0 +σBt +βσ2t,

assuming σ > 0. Then, the time-changed process can be built as XGt . Intuitively, the “time” scale

t for X is moving according to the process Gt . Here, Gt is called a subordinator of X .

We model the log of the hazard rate process ht as the time changed Brownian motion log(ht) =

XGt . Following Hurd (2009), we define the death time of an individual as the stopping time

τ = inf{t|Gt ≥ t∗}. Then

P(τ > t |Ft) = e
∫ t

0−eXGs ds (1)

Following Hurd (2009), we define the death time of an individual as the stopping time τ =

in f{ t | Gt ≥ t∗ }, with t∗ = in f{ Xt ≥ 0 }, i.e., the time when the hazard becomes one, or death

occurs. Accordingly, the cumulative distribution function the death time can be calculated (Hurd

2009) as

P(τ ≤ t,x) =
∫ inf

0
[N(
−x−βσ2y

σ
√

y
)+ e−2βxN(

−x+βσ2y
σ
√

y
)]ρt(y)dy (2)

with ρt being the density of Gt .

As is shown by Hurd (2009), the death time, or the stopping time, defined in the above way,

exhibits the reduced form property, a concept borrowed from financial mathematics. By Jarrow

and Protter (2004), the reduced form property proven by Hurd for this process allows the stopping

time to be inaccessible, and also allows for the observer to have only incomplete knowledge of

the evolution of the time changed Brownian motion. These properties are indeed desirable in
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our mortality modeling, since (a) death could happen unexpectedly, and (b) with the biological

knowledge that humans currently have, we have very limited knowledge of how the individual

hazard rate process of a person is precisely determined.

We model the log of the hazard rate process ht as the time changed Brownian motion log(ht) =

XGt , modeling the death time of an individual as the stopping time for a hazard function that

corresponds to a time changed Brownian motion, i.e., for log(ht) = XGt . This model provides

a new way to understand the increasing probability of death as an individual is aging. The

base process with the regular time t describes a generic pattern of how the probability of death

would evolve over time for people with certain characteristics such as genetics and place of

residence, and the stochastic process Gt assigns a unique and unobservable “internal clock” to

each individual that speeds up or slows down this initial clock t. This internal clock mechanism

Gt could be either continuous or discontinuous with jumps, but should not flow backward at any

time. Therefore, in addition to the regular time, the internal clock impacts how an individual

ages based on his characteristics such as age, health condition, etc. This clock could also depend

on some common factors such as air quality and macroeconomic condition.

Figure 1 shows two samples of moving paths of subordinator Gt , with Gt assumed to be Inverse

Gaussian Process with the same parameters. We can observe from the graph that individual 2

has a relatively fast increasing speed, with big jumps at age 64, 71 and 77, while individual 1

yields a relatively slow increasing speed after 65 years old. Individual 2’s jumps could describe

the impacts caused by unexpected life events or change of health conditions at age 64, 71 and 77,

and a more smooth path of evolution is exhibited in individual 1’s probability of death evolution.

2.2 modeling Mortality Dependency through Dependent Subordinators

In our model, we model the dependence of joint lives by allowing the two individuals of the

couple have correlated subordinators in their log-hazard functions.

Formally, consider a couple in which the male partner is denoted as M, and the female partner is

denoted as F . As per the above discussion, we assume that both of them have a base log hazard
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Figure 1. Samples of Time Changing Path
(Gt’s being Inverse Gaussian Processes)

rate (force of mortality) process XM and XF , with

XM
t = XM

0 +σ
MBM

t +β
M

σ
M2

t, (3)

and

XF
t = XF

0 +σ
FBF

t +β
F

σ
F 2

t (4)

respectively. Here, BM
t (and similarly, BF

t ) is a standard Brownian Motion, where XM
0 (XF

0 ) is

the starting value of the hazard rate process for XM
t (XF

t ), and σM (σF ) and β M (β F ) are two

parameters that determine their volatility and drift. The subordinators are noted as GM
t and GF

t ,

with XM, XF , GM
t and GF

t being mutually independent stochastic processes. Assume that the

subordinators GM
t and GF

t are constructed dependently, in the following way.

GM
t = α

M(t)Gt +(1−α
M(t))GM0

t ,0≤ α
M(t)≤ 1 (5)

GF
t = α

F(t)Gt +(1−α
F(t))GF0

t ,0≤ α
F(t)≤ 1 (6)

7



DRAFT

Here, Gt , GM0
t and GF0

t are three increasing Càdlàg processes which are mutually independent,

allowing jumps, and αM(t) and αF(t) are real valued deterministic function of t, ranging between

0 and 1. Note that both GM
t and GF

t involve two processes — a common process Gt which causes

the dependence between the male and the female, and individual processes GM0
t and GF0

t which

reflect the unique characteristics of each person as they apply to their trajectory along the time

axis. Hence, the time change of each person is determined by these two processes and their

weights (relative importance of each idiosyncratic and common effect). Clearly, the higher the

αM(t) (or αF(t)), the heavier the Gt weights at time t; thus the higher the impact the common

process has on the time changing process, and hence the more synchronized the male and the

female. When αM(t) (or αF(t)) takes the minimum value of 0, both the subordinators of the

male and the female individual, GM
t and GF

t , and the time changing process XM and XF are

mutually independent. Similarly, a value of 1 for αM(t) (or αF(t)) implies that the subordinator

of the male (female) follows the common temporal factor entirely and the lives are perfectly

correlated. In our analysis we allow αM(t) (or αF(t)) to change over time, which reflects the

possibility of changing dependency over time.

Under this model, the conditional cumulative density function of the individual i dies before

time t, given that individual j dies after time t, can be expressed as follows (Hurd, 2009).

P(τ i ≤ t;τ
j ≥ t) =

∫
0
(1−F i(xi,y))F j(x j,y)ρt(y)dy , i 6= j , i, j ∈ {M,F} (7)

where

Fm(x,y) =
e−βmx

π

∫
−

zsin(zx)
z2 +β 2

m
e−αmσ2

m(z
2+β 2

m)y/2−ΦGm0
((1−αm)σ

2
m(z

2+β 2
m)/2,y)dz , m = M,F (8)

.

Our model describes how an individual’s probability of death evolves. On one hand, an indi-

vidual’s probability of death can be impacted by external factors (air quality, macroeconomic

condition, etc.). Individuals living together share the same external characteristics, hence it is

reasonable to assume that a factor that causes a jump in one individual’s probability of death
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Figure 2. Samples of Subordinators of One Couple

process also affects on the other individual (resulting in dependent life trajectories). The shared

process Gt captures such common factors. On the other hand, the probability of death also

depend heavily on individuals’ idiosyncratic characteristics such as genome and age, and these

idiosyncratic factors are not associated with marital status. The processes GM0
t and GF0

t capture

these individual-level characteristics.

We also allow the weight αM(t) (or αF(t)) to be a time dependent function in our model.

Previous mortality models, such as Frees et al. (1996) and Luciano et al. (2008), use the copula

function to model the association between couples’ mortality, which is based on an assumption

that the correlation between the male and the female should be consistent through their entire

lives. However, it has been shown by previous studies (e.g., Austad, 2006) that the dependent

level between couples could change as people age. Our model respects the reality that the internal

characteristics and external factors could have different impacts throughout life course.

Figure 2 shows a sample of the subordinators within one couple. We can see from the figure that

on one hand, the male and the female yield different time changing path, while on the other hand,

they share a very similar pattern of increasing and jumping. Both the male and the female have

big jumps at age 64 and 76, which are caused by jumps of the common process Gt . Additionally,

the female has a unique jump at age 69 which is caused by her unique process GF0
t , while a

9



DRAFT

similar unique jump happens to the male at age 71.

3 Data

3.1 Data Description

We apply the methodology to a well-known Canadian insurance data set.2. This dataset contains

14,947 insurance contracts each of which represents a pair of couple observed between December

29th, 1988, to December 31st , 1993. Each observation includes the birth year of both the male

and female members, the time when they begin their joint life contract, if any of the members

is observed to have died during the observation period, and if yes, the year of death. We select

samples with the male and female both born between 1910 and 1925 and whose age differences

are not greater than five years, as we take (a) changing trends in mortality among different

generations, and (b) potential impacts of age differences into consideration in the data analysis.

This reduces the set for analysis to a subset of 7,270 pairs of observations. Due to the short

observing window and the limit of the size of the observed population, we do not consider cohort

effects, and we also do not include same-sex marriage. However, our model can be easily applied

to all types of joint-life contexts in a similar manner. Table 3 in the Appendix shows a summary

of the birth year of our data set.

3.2 Dependence between Joint Lives and Kaplan-Meier Estimation of Marginal

Survival Probability

Before applying any bivariate estimation model to our data set, we need to examine the depen-

dence between the joint lives. We calculate Kendall’s tau coefficient to measure the association

between the male and female’ life length. Kendall’s tau coefficient is expected to be zero if the

male and female are independent. However, in our data set, Kendall’s tau coefficient is 0.58,

with a p-value of 2.22×10−16. This indicates a strong association between the joint lives. This

assessment agrees with that of Frees et al. (1996) that also show the correlation of the mortality

rate processes between joint lives.

2We acknowledge the Society of Actuaries who originally furnished the data to Edward (Jed) Frees and Emiliano
Valdez. Frees and Valdez provided the data to us, and we gratefully acknowledge this as well
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We also apply the Kaplan-Meier nonparametric maximum likelihood estimation method to

estimate the marginal survival probability for the male and female, to show the trend of the

evolution of the probability of death (which are shown in Figure 3 below, and Table 4 in

the Appendix). The marginal survival probability we estimate is the conditional probability

P(τm > t | τm ≥ 63), m = {M (Male),F (Female)}, as the minimum age of our data set is 63.

It is significant that the female experience a lower probability of death in the period that we

examine. We have rounded down any age in between integers (i.e., used the age last birthday

value) in our analysis.

Figure 3. Kaplan-Meier Estimation of Marginal Survival Probability

(a) Male

(b) Female
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4 Estimating and Evaluating the Model

We apply both a classical nonparametric method, Dabrowska (1988), and our time changed hazard

rate process model to estimate the conditional probability P(τM > t1,τF > t2 | τM ≥ 63,τF ≥ 63).

In this section, we will show that our method obtains good results.

4.1 Nonparametric Estimation of the Bivariate Survival Function

Dabrowska (1988) proposes a nonparametric method of estimating the bivariate survival function

F(t1, t2) = P(τM > t1,τF > t2). We employ this estimation as the baseline estimation of the

probability. Here, τM is the death age of the male individual, and τF is the death age of the female

individual. We estimate the conditional probability because the starting age of our observation is

63 for both genders. This estimation takes the form of

P̂(τ1 > t1,τ2 > t2 | τM ≥ 63,τF ≥ 63) = P̂(τ1 > t1 | τM ≥ 63) × P̂(τ2 > t2 | τF ≥ 63)

×M(t1, t2 | τM ≥ 63,τF ≥ 63) ,
(9)

with P̂(τ1 > t1 | τM ≥ 63) and P̂(τ2 > t2 | τF ≥ 63) being the univariate Kaplan-Meier estimators

of each individual, and

M(t1, t2 | τM ≥ 63,τF ≥ 63), ∏
0<s1≤t1,0<s2≤t2

(1− L̂(∆s1,∆s2 | τM ≥ 63,τF ≥ 63))

being a multiplier for each pair of (t1, t2). Here, ∆s corresponds to the time period between s−1

and s. If the probabilities of death of the male and female are independent, then M(t1, t2 | τM ≥

63,τF ≥ 63) should be 1 at each pair of age. However, we find multipliers at all ages are greater

than 1, which indicates that the evolution of the probability of death of male and female are

indeed dependent.

4.2 Estimating Bivariate Survival Function through Time-Changed Hazard Rate

Process

We apply our model to the 7,270 observations in our data set. We first estimate the initial value

of Xm
0 , m = {M, f}, as the log of the hazard rate estimated by the Kaplan-Meier estimator at age
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63, i.e.,

XM
0 = log(−(0.968−1)/1) =−3.450 , XF

0 = log(−(0.998−1)/1) =−6.125 .

In our model, we select our subordinators to be the IG (Inverse Gaussian) process since it has a

good goodness-to-fit, and is easy to simulate. It is also widely used in other mortality models

such as Mitchell et al. (2013) and Wang et al. (2011). The hazard rate process ht , i.e., the time

changed Brownian motion XGt , thus follows the NIG (Normal Inverse Gaussian) process. The

NIG process requires the subordinators take the form of

Gt =IG( t , b )

GM0
t =IG(

1−
√

αM
√

1−αM
t ,

b×
√

1−αM
√

αM
)

GF0
t =IG(

1−
√

αF
√

1−αF
t ,

b×
√

1−αF
√

αF
) ,

(10)

and the Brownian motion takes the form of

β
M =

√
αM2−b2/(αMσM2)

β
F =

√
αF 2−b2/(αFσF 2) ,

(11)

as discussed in Luciano and Semeraro (2010).

Therefore, we have the set of parameters {αM,αF ,b,σM,σF} to be estimated. We simulate

10,000 pairs of (XM
t ,GF

t ) and (XF
t ,GF

t ), and calculate the stopping time defined in Section 3.1.

We further calculate the joint survival probabilities P̂(τ1 > t1,τ2 > t2 | τM ≥ 63,τF ≥ 63) for

63≤ t1 ≤ 83 and 63≤ t2 ≤ 83.

We fit the parameters so as to yield the minimal sum of the L1 distance between the estimated

probability and the nonparametric estimation by the Dabrowska’s estimator. In order to show

the possible change of the level of association and the level of impact from internal and external

factors, we first assume αM and αF are constants and calculate the mean, median and standard

deviation of the L1 distance, and then set them to be functions of regular time, calculating the

same statistical measures. We find that results appear to be better in terms of fitness when
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allowing αM(t) and αF(t) to be functions of time. To be more specific, we let αM(t) and αF(t)

be in the simple form of αM(t) = αM×CM
t , and αF(t) = αF ×CF

t .

Table 1-a shows the estimated value of the parameters when αM and αF are fixed constants,

and Table 1-b shows the estimated value of the parameters when αM and αF take the form

of αM(t) = αM×CM
t and αF(t) = αF ×CF

t . We can see from the table that both males and

females show decreasing degrees of dependence on the external factors, and males generally

have more significant decreasing trends than females.

Table 1. Estimated Value of Parameters

(a) Fixed αM and αF

αM αF b σM σF

Estimated 0.673 0.800 0.193 0.660 0.95

(b) αM(t) and αF(t) as functions of time

αM αF b σM σF CM CF

Estimated 0.62 0.62 0.0108 1.55 1.16 0.955 0.955

Table 2 shows the mean, median and the standard deviation of the L1 distance between our

estimation and the Dabrowska’s estimator for both estimations. These values are the averages of

10,000 repeated simulations.

We can see from Table 2 that our model yields highly accurate estimations. Specifically, when

assuming αM(t) and αF(t) as functions of time, we find that the mean and median of the

L1 distance between our estimation and Dabrowska’s estimation are only 0.008 and 0.0064,

respectively, which are less than the most widely used Copula model. These results show that

our model is reliable, and has useful applications in the risk and insurance practice.

5 Model Capability for More Advanced Age Group

In Section 4, we have shown that our model performs well on people in moderate old age.

However, as pointed out by previous studies, e.g. Gavrilov et al. (2017), human mortality may
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Table 2. L1 Distance

(a) Fixed αM and αF

Mean of L1 Distance Median of L1 Distance Std. of L1 Distance
Estimated 0.015 0.012 0.019

(b) αM(t) and αF(t) as functions of time

Mean of L1 Distance Median of L1 Distance Std. of L1 Distance
Estimated 0.0080 0.0064 0.0074

(c) L1 Distance (Frees et al. (1996))

Mean of L1 Distance Median of L1 Distance Std. of L1 Distance
Estimated 0.0100 0.0090 0.0071

show different patterns when people are in advanced age and the Gompertz-Makeham law may

not work there, although some other studies argue that human mortality follow very similar

pattern until extreme old age. In this section, we test our model on couples in a more advanced

age group, and show that our model still perform well. More specifically, our model outperform

the Copula model significantly.

5.1 Data Description

We collect data from the National Health Interview Survey (NHIS), which is a national survey

with information on the health, and health behaviors of the U.S. population, conducted by

the U.S. Census Bureau. In this survey, each year, samples of households across the entire

US. are randomly selected to be national representative samples. U.S. Census Bureau links

each household members to death certificate data (by CDC) where couples’ death years can be

obtained. However, death records used in this dataset only covers people who were reported

to be died during 1986 to 2011. Therefore, people in the dataset were either observed died

before 2011, or right censored. In our study, we select couples born between 1901 to 1910, in

consideration of the generation effect and the limited observation. It narrows down the dataset to

a total of 1,979 pairs of observations. We do not apply further constraints to our dataset because

of the limit of the sample size.
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5.2 Estimating and Evaluating the Model

We apply our model to the 1,979 pairs of observations, following the same estimation methods

as in Section 4. Conditional probabilities estimated here is the probability P(τM > t1,τF >

t2 | τM ≥ 75,τF ≥ 75). We can see from Table 4 that our model still obtain high accuracy and

outperforms the Copula model with Gompertz Marginal significantly.

Table 3. Estimated Value of Parameters

αM αF b σM σF CM CF

Estimated 0.550 0.550 0.0090 3.500 2.550 0.800 0.800

Table 4. L1 Distance

(a) αM(t) and αF(t) as functions of time

Mean of L1 Distance Median of L1 Distance Std. of L1 Distance

Estimated 0.0100 0.0077 0.0090

(b) L1 Distance (Gompertz & Copula)

Mean of L1 Distance Median of L1 Distance Std. of L1 Distance

Estimated 0.0167 0.0139 0.0118

6 Discussion and Conclusion

In this paper, we propose a new mortality model for dependent lives which uses a time changed

Brownian motion to describe the hazard rate process of an individual, and model the death time

of the individual as the stopping time when the value of the subordinator first becomes no less

than the regular time when the base process first reaches zero. Based on this, we model the

dependence of the probability of death between joint lives through dependent subordinators.

The subordinator of each individual contains both a common process that is shared with his/her

partner, as well as a unique factor process which is determined by his/her own age, gender,

genome, etc.
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In general, our modeling strategies provide a flexible framework for describing the evolution

of the probability of death for joint lives, compared with prior research that uses either cop-

ula functions (e.g., Frees et al, 1996) or non-parametric estimators (e.g., Dabrowska, 1988).

Specifically, our model allows the association level between joint lives to be changing over

time, which captures the fact that individuals’ internal characteristics could play an increasingly

more important role in determining the probability of death as they age (e.g., Austad, 2006). In

addition, our model allows the non-monotonicity of the hazard rate process, which allows for

the possibility that an individuals’ health condition can be improved and the evolution of the

probability of death can be slowed down.

In the empirical analysis, we exploit a Canadian insurance data set (Luciano et al, 2008; Frees

et al, 1996), and first run the baseline estimation using a non-parametric method (Dabrowska,

1988). We then apply our model to this data set. Results show that our model yields estimates

that are close to the baseline estimates. Specifically, the mean and median L1 distance between

two estimates is only 0.008 and 0.0064, respectively. Our model implementation is also straight-

forward, and is computationally easy. We also examine our model performance on more advance

age groups, and it also shows high estimation accuracy.

Our paper has potential of applications in the risk and insurance practice. First, our method can

be easily applied to data sets on other types of relationships (e.g., the pair of the owner and pet)

in insurance practice, even including non-health related distributional relationships (e.g. auto and

house). This further helps insurance companies to set appropriate pricing strategies. Second, as

our model points out trends in joint lives’ mortality, it can be used to guide household financial

management and retirement planning.

The idea of this paper leads to several future research paths. First, a natural continuation of our

current modeling strategies is to take the cohort effect and the age difference between couples into

account, and explore how these factors change modeling results. Second, we can further extend

our model to describe dependence among multiple household members. A more complicated

extension of our model is to determine αm(t) in a non-parametric manner, which leads to a

semi-parametric structure in our current model. In the empirical analysis, we need to use a more

rich data set on joint lives to conduct the cohort study and estimate effects brought by the age
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difference between joint lives.

Appendix

Table 5. Summary of Birth Years (Female by Male)

Year of Birth (F)
1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

1910 13 11 14 9 20 15 8 0 0 0 0 0 0 0 0 0
1911 12 19 25 20 26 24 14 11 0 0 0 0 0 0 0 0
1912 4 16 18 34 26 40 23 23 10 0 0 0 0 0 0 0
1913 10 12 23 27 36 56 37 56 26 13 0 0 0 0 0 0
1914 1 15 6 23 45 48 52 51 59 56 22 0 0 0 0 0

Year 1915 1 6 19 19 40 66 84 60 64 67 74 27 0 0 0 0
of 1916 0 2 14 10 44 47 71 51 76 74 68 56 42 0 0 0

Birth 1917 0 0 0 14 15 25 44 72 76 86 83 76 47 30 0 0
(M) 1918 0 0 0 1 10 16 39 57 68 77 112 104 71 61 38 0

1919 0 0 0 0 5 18 28 31 36 64 84 116 76 95 71 26
1920 0 0 0 0 0 6 17 29 51 85 118 136 105 96 101 83
1921 0 0 0 0 0 0 10 15 26 35 83 114 128 89 119 101
1922 0 0 0 0 0 0 0 7 15 28 55 78 110 129 87 99
1923 0 0 0 0 0 0 0 0 7 14 34 50 49 98 105 107
1924 0 0 0 0 0 0 0 0 0 11 23 36 27 60 91 96
1925 0 0 0 0 0 0 0 0 0 0 9 24 22 39 48 102
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Table 6. Kaplan-Meier Estimation of Marginal Survival Probability

Male
Age Survival Probability
63 0.968
64 0.960
65 0.946
66 0.936
67 0.926
68 0.910
69 0.898
70 0.886
71 0.870
72 0.856
73 0.837
74 0.817
75 0.792
76 0.766
77 0.742
78 0.718
79 0.690
80 0.650
81 0.618
82 0.558
83 0.492

Female
Age Survival Probability
63 0.998
64 0.996
65 0.994
66 0.989
67 0.986
68 0.980
69 0.975
70 0.967
71 0.959
72 0.946
73 0.938
74 0.930
75 0.917
76 0.908
77 0.898
78 0.884
79 0.864
80 0.846
81 0.806
82 0.791
83 0.767
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